BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 6165380)

  • 41. A mutant of Escherichia coli with a new, highly efficient promoter for the lactose operon.
    Bruenn J; Hollingsworth H
    Proc Natl Acad Sci U S A; 1973 Dec; 70(12):3693-7. PubMed ID: 4590169
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Letters to the editor: Regulation of ribonucleic acid synthesis in Escherichia coli B/r: an analysis of a shift-up. III. Stable RNA synthesis rate and ribosomal RNA chain growth rate following a shift-up.
    Dennis PP; Bremer H
    J Mol Biol; 1974 Oct; 89(1):223-9. PubMed ID: 4613855
    [No Abstract]   [Full Text] [Related]  

  • 43. Initial transcribed sequence mutations specifically affect promoter escape properties.
    Hsu LM; Cobb IM; Ozmore JR; Khoo M; Nahm G; Xia L; Bao Y; Ahn C
    Biochemistry; 2006 Jul; 45(29):8841-54. PubMed ID: 16846227
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Intermediates in transcription initiation from the E. coli lac UV5 promoter.
    Straney DC; Crothers DM
    Cell; 1985 Dec; 43(2 Pt 1):449-59. PubMed ID: 2416465
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Escherichia coli deoxyribonucleic acid dependent ribonucleic acid polymerase transcriptional pause sites on SV40 DNA F1.
    Reisbig RR; Hearst JE
    Biochemistry; 1981 Mar; 20(7):1907-18. PubMed ID: 7013806
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Computational prediction of functional abortive RNA in E. coli.
    Marcus JI; Hassoun S; Nair NU
    Genomics; 2017 Jul; 109(3-4):196-203. PubMed ID: 28347827
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CAP, the -45 region, and RNA polymerase: three partners in transcription initiation at lacP1 in Escherichia coli.
    Noel RJ; Reznikoff WS
    J Mol Biol; 1998 Sep; 282(3):495-504. PubMed ID: 9737918
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Crystal structures of the E. coli transcription initiation complexes with a complete bubble.
    Zuo Y; Steitz TA
    Mol Cell; 2015 May; 58(3):534-40. PubMed ID: 25866247
    [TBL] [Abstract][Full Text] [Related]  

  • 49. RNA-polymerase binding at the promoters of the rRNA genes of Escherichia coli.
    Kiss I; Boros I; Udvardy A; Venetianer P; Delius H
    Biochim Biophys Acta; 1980 Oct; 609(3):435-47. PubMed ID: 6159922
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of ribonucleic acid polymerase-T7 promoter binary complexes.
    Cech CL; McClure WR
    Biochemistry; 1980 May; 19(11):2440-7. PubMed ID: 6992860
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kinetics of RNA polymerase-promoter complex formation: effects of nonspecific DNA-protein interactions.
    Shanblatt SH; Revzin A
    Nucleic Acids Res; 1984 Jul; 12(13):5287-306. PubMed ID: 6462907
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transcription of chromatin. Initial and terminal nucleotides of ribonucleic acid synthesized by calf thymus and Escherichia coli ribonucleic acid polymerases.
    Keshgegian AA; Garibian GS; Furth JJ
    Biochemistry; 1973 Oct; 12(22):4337-42. PubMed ID: 4584322
    [No Abstract]   [Full Text] [Related]  

  • 53. Selectivity of RNA chain initiation in vitro. 1. Analysis of RNA initiations by two-dimensional thin-layer chromatography of 5'-triphosphate-labeled oligonucleotides.
    Miller JS; Burgess RR
    Biochemistry; 1978 May; 17(11):2054-9. PubMed ID: 352390
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inhibition of transcription initiation by lac repressor.
    Schlax PJ; Capp MW; Record MT
    J Mol Biol; 1995 Jan; 245(4):331-50. PubMed ID: 7837267
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nucleotide sequence of an RNA polymerase binding site at an early T7 promoter.
    Pribnow D
    Proc Natl Acad Sci U S A; 1975 Mar; 72(3):784-8. PubMed ID: 1093168
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vitro comparison of initiation properties of bacteriophage lambda wild-type PR and x3 mutant promoters.
    Hawley DK; McClure WR
    Proc Natl Acad Sci U S A; 1980 Nov; 77(11):6381-5. PubMed ID: 6450417
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Initiation sites for in vitro transcription of the tryptophan operon.
    Shimizu N; Shimizu Y; Hayashi M
    Biochemistry; 1974 Dec; 13(25):5235-42. PubMed ID: 4611480
    [No Abstract]   [Full Text] [Related]  

  • 58. Mechanism of ribonucleic acid chain initiation. 2. A real time analysis of initiation by the rapid kinetic technique.
    Shimamoto N; Wu CW
    Biochemistry; 1980 Mar; 19(5):849-56. PubMed ID: 6153532
    [No Abstract]   [Full Text] [Related]  

  • 59. Mechanism of regulation of transcription initiation by ppGpp. I. Effects of ppGpp on transcription initiation in vivo and in vitro.
    Barker MM; Gaal T; Josaitis CA; Gourse RL
    J Mol Biol; 2001 Jan; 305(4):673-88. PubMed ID: 11162084
    [TBL] [Abstract][Full Text] [Related]  

  • 60. RNA chain elongation by Escherichia coli RNA polymerase. Factors affecting the stability of elongating ternary complexes.
    Arndt KM; Chamberlin MJ
    J Mol Biol; 1990 May; 213(1):79-108. PubMed ID: 1692594
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.