These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 6165380)

  • 81. Cell-free transcription in
    Barrows JK; Long DT
    J Biol Chem; 2019 Dec; 294(51):19645-19654. PubMed ID: 31732562
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Displacement of the transcription factor B reader domain during transcription initiation.
    Dexl S; Reichelt R; Kraatz K; Schulz S; Grohmann D; Bartlett M; Thomm M
    Nucleic Acids Res; 2018 Nov; 46(19):10066-10081. PubMed ID: 30102372
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Correlating Transcription Initiation and Conformational Changes by a Single-Subunit RNA Polymerase with Near Base-Pair Resolution.
    Koh HR; Roy R; Sorokina M; Tang GQ; Nandakumar D; Patel SS; Ha T
    Mol Cell; 2018 May; 70(4):695-706.e5. PubMed ID: 29775583
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Quantifying the influence of 5'-RNA modifications on RNA polymerase I activity.
    Appling FD; Lucius AL; Schneider DA
    Biophys Chem; 2017 Nov; 230():84-88. PubMed ID: 28893424
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Mechanism of transcription initiation and promoter escape by
    Henderson KL; Felth LC; Molzahn CM; Shkel I; Wang S; Chhabra M; Ruff EF; Bieter L; Kraft JE; Record MT
    Proc Natl Acad Sci U S A; 2017 Apr; 114(15):E3032-E3040. PubMed ID: 28348246
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Förster resonance energy transfer and protein-induced fluorescence enhancement as synergetic multi-scale molecular rulers.
    Ploetz E; Lerner E; Husada F; Roelfs M; Chung S; Hohlbein J; Weiss S; Cordes T
    Sci Rep; 2016 Sep; 6():33257. PubMed ID: 27641327
    [TBL] [Abstract][Full Text] [Related]  

  • 87. RNA Polymerase Pausing during Initial Transcription.
    Duchi D; Bauer DL; Fernandez L; Evans G; Robb N; Hwang LC; Gryte K; Tomescu A; Zawadzki P; Morichaud Z; Brodolin K; Kapanidis AN
    Mol Cell; 2016 Sep; 63(6):939-50. PubMed ID: 27618490
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Unusual interaction of RNA polymerase with the bacteriophage Mu middle promoter Pm in the absence of its activator protein Mor.
    Mo Y; Howe MM
    Microbiologyopen; 2014 Aug; 3(4):470-83. PubMed ID: 24916637
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Monitoring abortive initiation.
    Hsu LM
    Methods; 2009 Jan; 47(1):25-36. PubMed ID: 18948204
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Abortive initiation and productive initiation by RNA polymerase involve DNA scrunching.
    Revyakin A; Liu C; Ebright RH; Strick TR
    Science; 2006 Nov; 314(5802):1139-43. PubMed ID: 17110577
    [TBL] [Abstract][Full Text] [Related]  

  • 91. A pathway branching in transcription initiation in Escherichia coli.
    Susa M; Kubori T; Shimamoto N
    Mol Microbiol; 2006 Mar; 59(6):1807-17. PubMed ID: 16553885
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Interactions of Escherichia coli sigma(70) within the transcription elongation complex.
    Daube SS; von Hippel PH
    Proc Natl Acad Sci U S A; 1999 Jul; 96(15):8390-5. PubMed ID: 10411885
    [TBL] [Abstract][Full Text] [Related]  

  • 93. RNA polymerase-promoter interactions: the comings and goings of RNA polymerase.
    deHaseth PL; Zupancic ML; Record MT
    J Bacteriol; 1998 Jun; 180(12):3019-25. PubMed ID: 9620948
    [No Abstract]   [Full Text] [Related]  

  • 94. Kinetics of transcription in a minute column.
    Kubori T; Shimamoto N
    Nucleic Acids Res; 1996 Apr; 24(7):1380-1. PubMed ID: 8614646
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Escherichia coli transcript cleavage factors GreA and GreB stimulate promoter escape and gene expression in vivo and in vitro.
    Hsu LM; Vo NV; Chamberlin MJ
    Proc Natl Acad Sci U S A; 1995 Dec; 92(25):11588-92. PubMed ID: 8524809
    [TBL] [Abstract][Full Text] [Related]  

  • 96. RNA polymerase idling and clearance in gal promoters: use of supercoiled minicircle DNA template made in vivo.
    Choy HE; Adhya S
    Proc Natl Acad Sci U S A; 1993 Jan; 90(2):472-6. PubMed ID: 8380640
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Effects of transcriptional start site sequence and position on nucleotide-sensitive selection of alternative start sites at the pyrC promoter in Escherichia coli.
    Liu J; Turnbough CL
    J Bacteriol; 1994 May; 176(10):2938-45. PubMed ID: 7910603
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Poly(dAT) dependent trinucleotide synthesis catalysed by wheat germ RNA polymerase II. Effects of nucleotide substrates and cordycepin triphosphate.
    Dietrich J; Teissere M; Job C; Job D
    Nucleic Acids Res; 1985 Sep; 13(17):6155-70. PubMed ID: 4047941
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Effect of salts on abortive and productive elongation catalysed by wheat germ RNA polymerase II.
    Dietrich J; Teissere M; Job C; Job D
    Nucleic Acids Res; 1986 Feb; 14(4):1583-97. PubMed ID: 3513126
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Modulation of transcription by DNA supercoiling: a deletion analysis of the Escherichia coli gyrA and gyrB promoters.
    Menzel R; Gellert M
    Proc Natl Acad Sci U S A; 1987 Jun; 84(12):4185-9. PubMed ID: 3035573
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.