These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 616577)

  • 1. Functional characteristics of the hippocampus after visual deafferentation in early ontogeny.
    Nikitina GM; Boravova AI
    Neurosci Behav Physiol; 1977; 8(2):96-103. PubMed ID: 616577
    [No Abstract]   [Full Text] [Related]  

  • 2. [Functional characteristics of the hippocampus after switching off visual afferentation in early ontogenesis].
    Nikitina GM; Boravova AI
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1977; 27(3):609-17. PubMed ID: 899266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The electrical activity of cortical and subcortical regions of the rabbit brain following early visual deprivation].
    Shiliagina NN
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1973; 23(5):1066-73. PubMed ID: 4776837
    [No Abstract]   [Full Text] [Related]  

  • 4. [Spectral-correlation analysis of high-frequency EEG components of the rabbit cerebral cortex during orienting and defensive responses].
    Efremova TM; Morozov AT; Sokolov SS; Shlichthaar R
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1981; 31(6):1207-16. PubMed ID: 7331507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Changes in the electroencephalogram during orienting and food procuring reflexes to a chain stimulus in rabbits].
    Voronin LG; Apostol G; Kaliuzhnyĭ LV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1966; 16(3):395-403. PubMed ID: 6005513
    [No Abstract]   [Full Text] [Related]  

  • 6. [Formation of a defensive conditioned reflex to photic stimulation following early visual deprivation].
    Volokhov AA; Shiliagina NN
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1972; 22(4):735-42. PubMed ID: 4634688
    [No Abstract]   [Full Text] [Related]  

  • 7. Maintained activity, excitation and inhibition of lateral geniculate neurons after monocular deafferentation in the adult cat.
    Eysel UT
    Brain Res; 1979 Apr; 166(2):259-71. PubMed ID: 218692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modification of visual evoked potentials during orienting behavior in the rabbit.
    Walley RE; Urschel JW
    Physiol Behav; 1972 Jul; 9(1):7-13. PubMed ID: 5080159
    [No Abstract]   [Full Text] [Related]  

  • 9. Switchboard versus statistical theories of learning and memory.
    John ER
    Science; 1972 Sep; 177(4052):850-64. PubMed ID: 5054641
    [No Abstract]   [Full Text] [Related]  

  • 10. Immediate effects of total visual deafferentation on single unit activity in the visual cortex of freely behaving cats. I. Tonic excitability changes.
    Kasamatsu T; Adey WR
    Exp Brain Res; 1974; 20(2):157-70. PubMed ID: 4365929
    [No Abstract]   [Full Text] [Related]  

  • 11. Immediate effects of total visual deafferentation on single unit activity in the visual cortex of freely behaving cats. II. Rhythmic EEG bursts and PGO waves.
    Kasamatsu T; Adey WR
    Exp Brain Res; 1974; 20(2):171-9. PubMed ID: 4365930
    [No Abstract]   [Full Text] [Related]  

  • 12. Functional reinnervation in kitten visual cortex.
    Movshon JA; Blakemore C
    Nature; 1974 Oct; 251(5475):504-5. PubMed ID: 4424712
    [No Abstract]   [Full Text] [Related]  

  • 13. Effects of visual deafferentation on mesencephalic reticular activity in freely behaving cats.
    Kasamatsu T
    Exp Neurol; 1970 Nov; 29(2):251-67. PubMed ID: 5504470
    [No Abstract]   [Full Text] [Related]  

  • 14. Relevant stimuli and auditory evoked potentials.
    Anderson BW; Oatman LC
    J Psychol; 1976 Nov; 94(2d Half):301-10. PubMed ID: 994074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Squint affects striate cortex cells encoding horizontal image movements.
    Singer W; Rauschecker J; von Gruenau M
    Brain Res; 1979 Jul; 170(1):182-6. PubMed ID: 466400
    [No Abstract]   [Full Text] [Related]  

  • 16. ECoG effects of peripheral deafferentation of prepyriform and visual cortices in rats.
    Ricardo JA; Negrão N; Pereira JS
    Physiol Behav; 1980 Apr; 24(4):727-36. PubMed ID: 7394015
    [No Abstract]   [Full Text] [Related]  

  • 17. Visual field measurements in monocularly deprived and normal cats.
    van Hof-van Duin J
    Exp Brain Res; 1977 Nov; 30(2-3):353-68. PubMed ID: 598433
    [No Abstract]   [Full Text] [Related]  

  • 18. Visual experience and development of interocular orientation disparity in visual cortex.
    Bruce CJ; Isley MR; Shinkman PG
    J Neurophysiol; 1981 Aug; 46(2):215-28. PubMed ID: 7264711
    [No Abstract]   [Full Text] [Related]  

  • 19. [Electrophysiological study of several types of internal inhibition].
    Efremova TM; Trush VD
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1974; 24(2):292-300. PubMed ID: 4826823
    [No Abstract]   [Full Text] [Related]  

  • 20. Neuronal mechanisms in visual perception.
    Pöppel E; Held R; Dowling JE
    Neurosci Res Program Bull; 1977 Oct; 15(3):313-9, 323-553. PubMed ID: 414150
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.