These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 6167038)

  • 1. [Uridine transport and phosphorylation in 3T3 and CHO cells depending on the culture growth conditions].
    Sorokin AB; Sorkin AD; Nikol'skiĭ NN
    Tsitologiia; 1981 Apr; 23(4):419-26. PubMed ID: 6167038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Uridine transport and phosphorylation in 3T3 and CHO cells with induced cell proliferation].
    Sorokin AB; Sorkin AD; Nikol'skiĭ NN
    Tsitologiia; 1981 May; 23(5):523-30. PubMed ID: 6167039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uridine transport and phosphorylation in mouse cells in culture: effect of growth-promoting factors, cell cycle transit and oncogenic transformation.
    Rozengurt E; Mierzejewski K; Wigglesworth N
    J Cell Physiol; 1978 Nov; 97(2):241-51. PubMed ID: 701389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Mathematical analysis and experimental study of uridine transport and phosphorylation in 3T6 cells].
    Sorkin AD; Sorokin AB
    Tsitologiia; 1983 Jul; 25(7):784-92. PubMed ID: 6623636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of cultivation conditions on the growth properties of Swiss 3T3 cells].
    Barkan RS; Zenin VV; Skopicheva VI; Sorokin AB
    Tsitologiia; 1984 Oct; 26(10):1161-7. PubMed ID: 6515717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissociation by cytochalasin B of movement, DNA synthesis and transport in 3T3 cells.
    Brownstein BL; Rozengurt E; Jimenez de Asua L; Stoker M
    J Cell Physiol; 1975 Jun; 85(3):579-85. PubMed ID: 1170181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation between activation of quiescent 3T3 cells by retinoic acid and increases in uridine phosphorylation and cellular RNA synthesis.
    Rapaport E; Schroder EW; Kabcenell AK; Black PH
    Cancer Res; 1982 Dec; 42(12):4918-20. PubMed ID: 6182986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increase in the affinity of the uridine phosphorylation system for ATP after serum or insulin activation of 3T3 fibroblasts.
    Goldenberg GJ; Stein WD
    J Supramol Struct; 1978; 9(4):489-96. PubMed ID: 750762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [D-xylose transport in cultured mammalian cells].
    Vinogradova NA; Nikol'skiĭ NN; Semenova EG
    Tsitologiia; 1980 Mar; 22(3):303-9. PubMed ID: 7368308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of growth of proline-requiring Chinese hamster ovary cells (CHO-k1) resulting from antagonism by a system amino acids.
    Curriden S; Englesberg E
    J Cell Physiol; 1981 Feb; 106(2):245-52. PubMed ID: 7194346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Some patterns of RNA synthesis in the proliferation induction process in a stationary culture of Chinese hamster cells].
    Zosimovskaia AI; Terslolj VV
    Tsitologiia; 1975 Mar; 17(3):266-71. PubMed ID: 1135947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Proliferation and DNA synthesis in a CHO-K1 cell culture with a varying serum concentration in the medium].
    Sorokin AB
    Tsitologiia; 1981 Apr; 23(4):468-72. PubMed ID: 7256849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Damaging effect of 3H-uridine on tissue culture cells during the logarithmic and stationary phases of growth].
    Polikarpova SI; Smirnova II
    Ontogenez; 1976; 7(5):525-9. PubMed ID: 1036114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of colony formation of NIH 3T3 cells by the expression of the small molecular weight heat shock protein HSP27: involvement of its phosphorylation and aggregation at the C-terminal region.
    Arata S; Hamaguchi S; Nose K
    J Cell Physiol; 1997 Jan; 170(1):19-26. PubMed ID: 9012781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Changes in the alkaline cation transport across the plasma membrane of CHO-K1 cell lines resistant to ethidium bromide].
    Marakhova II; Pospelova TV; Vereninov AA; Ignatova TN
    Tsitologiia; 1981 Apr; 23(4):410-8. PubMed ID: 7256844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uridine uptake and its intracellular phosphorylation during the cell cycle.
    Stambrook PJ; Sisken JE; Ebert JD
    J Cell Physiol; 1973 Oct; 82(2):267-75. PubMed ID: 4356678
    [No Abstract]   [Full Text] [Related]  

  • 17. Transport of D-[1-14C]-amino acids into Chinese hamster ovary (CHO-K1) cells: implications for use of labeled d-amino acids as molecular imaging agents.
    Shikano N; Nakajima S; Kotani T; Ogura M; Sagara J; Iwamura Y; Yoshimoto M; Kubota N; Ishikawa N; Kawai K
    Nucl Med Biol; 2007 Aug; 34(6):659-65. PubMed ID: 17707806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Mg2+ as an intracellular regulator of uridine uptake.
    Vidair C; Rubin H
    J Cell Physiol; 1981 Sep; 108(3):317-25. PubMed ID: 7287824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Initial identification of low temperature and culture stage induction of miRNA expression in suspension CHO-K1 cells.
    Gammell P; Barron N; Kumar N; Clynes M
    J Biotechnol; 2007 Jun; 130(3):213-8. PubMed ID: 17570552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of okadaic acid--induced cytotoxic effects in CHO K1 cells.
    Huynh-Delerme C; Fessard V; Kiefer-Biasizzo H; Puiseux-Dao S
    Environ Toxicol; 2003 Dec; 18(6):383-94. PubMed ID: 14608608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.