BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 6167499)

  • 41. Production and properties of alpha-amylase from Penicillium chrysogenum and its application in starch hydrolysis.
    Balkan B; Ertan F
    Prep Biochem Biotechnol; 2005; 35(2):169-78. PubMed ID: 15881598
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of starch as a substrate for Bacteroides vulgatus growing in the human colon.
    McCarthy RE; Pajeau M; Salyers AA
    Appl Environ Microbiol; 1988 Aug; 54(8):1911-6. PubMed ID: 2460027
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Digestion in adult females of the leaf-footed bug Leptoglossus zonatus (Hemiptera: Coreidae) with emphasis on the glycoside hydrolases α-amylase, α-galactosidase, and α-glucosidase.
    Rocha AA; Pinto CJ; Samuels RI; Alexandre D; Silva CP
    Arch Insect Biochem Physiol; 2014 Mar; 85(3):152-63. PubMed ID: 24481987
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Analysis of kinetic parameters and mechanisms of nanocrystalline cellulose inhibition of α-amylase and α-glucosidase in simulated digestion of starch.
    Nsor-Atindana J; Yu M; Goff HD; Chen M; Zhong F
    Food Funct; 2020 May; 11(5):4719-4731. PubMed ID: 32412562
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [The effect of neutral urinary alpha-glucosidase on the alpha-amylase determination with maltotetraose as a substrate].
    Dickgiesser A; Müller HA; Kruse-Jarres JD
    Med Lab (Stuttg); 1981; 34(9-10):228-31. PubMed ID: 6175886
    [No Abstract]   [Full Text] [Related]  

  • 46. Leaf starch degradation comes out of the shadows.
    Lloyd JR; Kossmann J; Ritte G
    Trends Plant Sci; 2005 Mar; 10(3):130-7. PubMed ID: 15749471
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Maltose-forming α-amylase from the hyperthermophilic archaeon Pyrococcus sp. ST04.
    Jung JH; Seo DH; Holden JF; Park CS
    Appl Microbiol Biotechnol; 2014 Mar; 98(5):2121-31. PubMed ID: 23884203
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Random mutagenesis of super Koji (Aspergillus oryzae): improvement in production and thermal stability of α-amylases for maltose syrup production.
    Aleem B; Rashid MH; Zeb N; Saqib A; Ihsan A; Iqbal M; Ali H
    BMC Microbiol; 2018 Nov; 18(1):200. PubMed ID: 30486793
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Branch pattern of starch internal structure influences the glucogenesis by mucosal Nt-maltase-glucoamylase.
    Lin AH; Ao Z; Quezada-Calvillo R; Nichols BL; Lin CT; Hamaker BR
    Carbohydr Polym; 2014 Oct; 111():33-40. PubMed ID: 25037326
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Starch degradation by the mould Trichoderma viride. I. The mechanism of starch degradation.
    Schellart JA; Visser FM; Zandstra T; Middelhoven WJ
    Antonie Van Leeuwenhoek; 1976; 42(3):229-38. PubMed ID: 10832
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Influence of media composition on the production of alkaline α-amylase from Bacillus subtilis CB-18.
    Ogbonnaya N; Odiase A
    Acta Sci Pol Technol Aliment; 2012; 11(3):231-8. PubMed ID: 22744943
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Degradation of Maillard reaction products by amylolytic enzymes. 3. Inhibition of glucoamylase, alpha-amylase and alpha-glucosidase by heat treated alpha-glucans and melanoidins].
    Schumacher D; Hirsch D; Cämmerer B; Kroh LW
    Z Lebensm Unters Forsch; 1996 Oct; 203(4):391-4. PubMed ID: 9123978
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Alpha-amylase production by toxigenic fungi.
    Shafique S; Bajwa R; Shafique S
    Nat Prod Res; 2010 Sep; 24(15):1449-56. PubMed ID: 20812132
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regional distant sequence homology between amylases, alpha-glucosidases and transglucanosylases.
    Svensson B
    FEBS Lett; 1988 Mar; 230(1-2):72-6. PubMed ID: 2450787
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hibiscus acid as an inhibitor of starch digestion in the Caco-2 cell model system.
    Hansawasdi C; Kawabata J; Kasai T
    Biosci Biotechnol Biochem; 2001 Sep; 65(9):2087-9. PubMed ID: 11676026
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transglucosylation activities of multiple forms of alpha-glucosidase from spinach.
    Sugimoto M; Furui S; Sasaki K; Suzuki Y
    Biosci Biotechnol Biochem; 2003 May; 67(5):1160-3. PubMed ID: 12834301
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Purification, biochemical characterization, and gene cloning of a new extracellular thermotolerant and glucose tolerant maltooligosaccharide-forming alpha-amylase from an endophytic ascomycete Fusicoccum sp. BCC4124.
    Champreda V; Kanokratana P; Sriprang R; Tanapongpipat S; Eurwilaichitr L
    Biosci Biotechnol Biochem; 2007 Aug; 71(8):2010-20. PubMed ID: 17690465
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comprehensive enzymatic analysis of the amylolytic system in the digestive fluid of the sea hare, Aplysia kurodai: Unique properties of two α-amylases and two α-glucosidases.
    Tsuji A; Nishiyama N; Ohshima M; Maniwa S; Kuwamura S; Shiraishi M; Yuasa K
    FEBS Open Bio; 2014; 4():560-70. PubMed ID: 25161866
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Production, purification and characterization of an extracellular alpha-amylase enzyme isolated from Aspergillus flavus.
    Abou-Zeid AM
    Microbios; 1997; 89(358):55-66. PubMed ID: 9218355
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Induction and repression of alpha-amylase production in batch and continuous cultures of Aspergillus oryzae.
    Mørkeberg R; Carlsen M; Nielsen J
    Microbiology (Reading); 1995 Oct; 141 ( Pt 10)():2449-54. PubMed ID: 7582005
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.