These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 6168329)

  • 1. Neocortical projections of the rat anterior commissure.
    Horel JA; Stelzner DJ
    Brain Res; 1981 Sep; 220(1):1-12. PubMed ID: 6168329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neocortical and basal telencephalic origins of the anterior commissure of the cat.
    Jouandet ML
    Neuroscience; 1982 Jul; 7(7):1731-52. PubMed ID: 7121832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lesion-induced synapse reorganization in the hippocampus of cats: sprouting of entorhinal, commissural/associational, and mossy fiber projections after unilateral entorhinal cortex lesions, with comments on the normal organization of these pathways.
    Steward O
    Hippocampus; 1992 Jul; 2(3):247-68. PubMed ID: 1284974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Afferent connections of the perirhinal cortex in the rat.
    Deacon TW; Eichenbaum H; Rosenberg P; Eckmann KW
    J Comp Neurol; 1983 Oct; 220(2):168-90. PubMed ID: 6643724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for a direct projection from the superior temporal gyrus to the entorhinal cortex in the monkey.
    Amaral DG; Insausti R; Cowan WM
    Brain Res; 1983 Sep; 275(2):263-77. PubMed ID: 6194854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corticothalamic and corticotectal somatosensory projections from the anterior ectosylvian sulcus (SIV cortex) in neonatal cats: an anatomical demonstration with HRP and 3H-leucine.
    McHaffie JG; Kruger L; Clemo HR; Stein BE
    J Comp Neurol; 1988 Aug; 274(1):115-26. PubMed ID: 2458394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain stem projections from cortical area 18 in the albino rat.
    Benzinger H; Massopust LC
    Exp Brain Res; 1983; 50(1):1-8. PubMed ID: 6196222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Connections of the median and dorsal raphe nuclei in the rat: an autoradiographic and degeneration study.
    Conrad LC; Leonard CM; Pfaff DW
    J Comp Neurol; 1974 Jul; 156(2):179-205. PubMed ID: 4419253
    [No Abstract]   [Full Text] [Related]  

  • 9. The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat.
    Krettek JE; Price JL
    J Comp Neurol; 1977 Jan; 171(2):157-91. PubMed ID: 64477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fields of origin and pathways of the interhemispheric commissures in the temporal lobe of macaques.
    Demeter S; Rosene DL; Van Hoesen GW
    J Comp Neurol; 1990 Dec; 302(1):29-53. PubMed ID: 2086614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interhemispheric connections of the visual cortex in the grey squirrel (Sciurus carolinensis).
    Gould HJ
    J Comp Neurol; 1984 Feb; 223(2):259-301. PubMed ID: 6200520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat.
    Swanson LW; Cowan WM
    J Comp Neurol; 1977 Mar; 172(1):49-84. PubMed ID: 65364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mediodorsal nucleus: areal, laminar, and tangential distribution of afferents and efferents in the frontal lobe of rhesus monkeys.
    Giguere M; Goldman-Rakic PS
    J Comp Neurol; 1988 Nov; 277(2):195-213. PubMed ID: 2466057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Olfactory relationships of the telencephalon and diencephalon in the rabbit. II. An autoradiographic and horseradish peroxidase study of the efferent connections of the anterior olfactory nucleus.
    Broadwell RD
    J Comp Neurol; 1975 Dec; 164(4):389-409. PubMed ID: 1206126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An analysis of the efferent connections of the septal area in the cat.
    Krayniak PF; Weiner S; Siegel A
    Brain Res; 1980 May; 189(1):15-29. PubMed ID: 6153919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Olivocerebellar projections in the cat studied by means of anterograde axonal transport of labelled amino acids as tracers.
    Kawamura K; Hashikawa T
    Neuroscience; 1979; 4(11):1615-33. PubMed ID: 92769
    [No Abstract]   [Full Text] [Related]  

  • 17. Cytological and quantitative characteristics of four cerebral commissures in the rhesus monkey.
    Lamantia AS; Rakic P
    J Comp Neurol; 1990 Jan; 291(4):520-37. PubMed ID: 2329189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MRI-based morphometric characterizations of sexual dimorphism of the cerebrum of ferrets (Mustela putorius).
    Sawada K; Horiuchi-Hirose M; Saito S; Aoki I
    Neuroimage; 2013 Dec; 83():294-306. PubMed ID: 23770407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An autoradiographic study of the efferent connections of the entorhinal cortex in the rat.
    Wyss JM
    J Comp Neurol; 1981 Jul; 199(4):495-512. PubMed ID: 6168668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple ordering of neocortical areas established by the compartmental organization of their striatal projections.
    Ragsdale CW; Graybiel AM
    Proc Natl Acad Sci U S A; 1990 Aug; 87(16):6196-9. PubMed ID: 1696719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.