These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 6168763)

  • 1. Evidence for two compartments of exchangeable calcium in isolated rat liver mitochondria obtained using a 45Ca exchange technique in the presence of magnesium, phosphate, and ATPase at 37 degrees C.
    Barritt GJ
    J Membr Biol; 1981; 62(1-2):53-63. PubMed ID: 6168763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic properties of exchangeable calcium in guinea-pig heart mitochondria measured at low concentrations of free calcium and in the presence of Mg2+, ATP4- and inorganic phosphate.
    Barritt GJ; Lamont SV
    Cell Calcium; 1982 Aug; 3(3):215-25. PubMed ID: 6890411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of lysophospholipids on Ca2+ transport in rat liver mitochondria incubated at physiological Ca2+ concentrations in the presence of Mg2+, phosphate and ATP at 37 degrees C.
    Dalton S; Hughes BP; Barritt GJ
    Biochem J; 1984 Dec; 224(2):423-30. PubMed ID: 6517860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A kinetic analysis of the effects of adrenaline on calcium distribution in isolated rat liver parenchymal cells.
    Barritt GJ; Parker JC; Wadsworth JC
    J Physiol; 1981 Mar; 312():29-55. PubMed ID: 7264996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The action of Nupercaine on calcium efflux from rat liver mitochondria.
    Dawson AP; Fulton DV
    Biochem J; 1980 Jun; 188(3):749-55. PubMed ID: 6162452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of micromolar concentrations of manganese ions on calcium-ion cycling in rat liver mitochondria.
    Hughes BP; Exton JH
    Biochem J; 1983 Jun; 212(3):773-82. PubMed ID: 6192809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steady state regulation of extramitochondrial Ca2+ by rat liver mitochondria: effects of Mg2+ and ATP.
    Becker GL
    Biochim Biophys Acta; 1980 Jul; 591(2):234-9. PubMed ID: 7397122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered ATP-dependent mitochondrial Ca2+ uptake in cold ischemia is attenuated by ruthenium red.
    Belous A; Knox C; Nicoud IB; Pierce J; Anderson C; Pinson CW; Chari RS
    J Surg Res; 2003 May; 111(2):284-9. PubMed ID: 12850475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of mitochondrial calcium transport. II. A kinetic description of the sodium-dependent calcium efflux mechanism of liver mitochondria and inhibition by ruthenium red and by tetraphenylphosphonium.
    Wingrove DE; Gunter TE
    J Biol Chem; 1986 Nov; 261(32):15166-71. PubMed ID: 2429966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of ruthenium red on the Ca2+ and Sr2+ efflux from rat liver mitochondria: influence of nupercaine.
    Pezzi L
    Biosci Rep; 1984 Mar; 4(3):231-7. PubMed ID: 6202338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ruthenium red-insensitive Ca2+ uptake and release by mitochondria.
    Cockrell RS
    Arch Biochem Biophys; 1985 Nov; 243(1):70-9. PubMed ID: 2415064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aspects of energy-linked calcium accumulation by rat heart mitochondria.
    Jacobus WE; Tiozzo R; Lugli G; Lehninger AL; Carafoli E
    J Biol Chem; 1975 Oct; 250(19):7863-70. PubMed ID: 1176452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Active transport of calcium in thymocytes].
    Jodin C; Landry Y
    C R Seances Soc Biol Fil; 1975; 169(5):1315-9. PubMed ID: 131632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of Ca2+ efflux from mitochondria by nupercaine and tetracaine.
    Dawson AP; Selwyn MJ; Fulton DV
    Nature; 1979 Feb; 277(5696):484-6. PubMed ID: 763333
    [No Abstract]   [Full Text] [Related]  

  • 15. Studies of mitochondrial calcium movements using chlorotetracycline.
    Luthra R; Olson MS
    Biochim Biophys Acta; 1976 Sep; 440(3):744-58. PubMed ID: 822874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the state of calcium ions in isolated rat liver mitochondria IV. Prevention of phosphate-induced mitochondrial destruction by ruthenium red-insensitive calcium release.
    Blaich G; Krell H; Pfaff E
    Biol Chem Hoppe Seyler; 1985 May; 366(5):515-9. PubMed ID: 2408639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of phosphate in the regulation of the independent calcium-efflux pathway of liver mitochondria.
    Zoccarato F; Nicholls D
    Eur J Biochem; 1982 Oct; 127(2):333-8. PubMed ID: 6183118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium transport and inner mitochondrial membrane damage in renal cortical mitochondria.
    Weinberg JM; Humes HD
    Am J Physiol; 1985 Jun; 248(6 Pt 2):F876-89. PubMed ID: 4003558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium transport in human term placental mitochondria.
    Flores-Herrera O; Pardo JP; Espinosa-García MT; Martínez F
    Biochem Mol Biol Int; 1995 Apr; 35(4):793-801. PubMed ID: 7542958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The inhibition of calcium uptake and release by rat liver mitochondria by ruthenium red.
    Luthra R; Olson MS
    FEBS Lett; 1977 Sep; 81(1):142-6. PubMed ID: 902768
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.