These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 6169412)
1. Specific neuritic pathways and arborizations formed by fetal mouse dorsal root ganglion cells within organized spinal cord explants in culture: a peroxidase-labeling study. Smalheiser NR; Peterson ER; Crain SM Brain Res; 1981 Oct; 254(3):383-95. PubMed ID: 6169412 [TBL] [Abstract][Full Text] [Related]
2. Selective innervation of target regions within fetal mouse spinal cord and medulla explants by isolated dorsal root ganglia in organotypic co-cultures. Crain SM; Peterson ER Brain Res; 1981 Oct; 254(3):341-62. PubMed ID: 7284856 [TBL] [Abstract][Full Text] [Related]
3. Preferential growth of neurites from isolated fetal mouse dorsal root ganglia in relation to specific regions of co-cultured spinal cord explants. Peterson ER; Crain SM Brain Res; 1981 Oct; 254(3):363-82. PubMed ID: 7284857 [TBL] [Abstract][Full Text] [Related]
4. Influence of growth medium, age in vitro and spontaneous bioelectric activity on the distribution of sensory ganglion-evoked activity in spinal cord explants. Baker RE; Habets AM; Brenner E; Corner MA Brain Res; 1982 Nov; 281(3):329-41. PubMed ID: 6185184 [TBL] [Abstract][Full Text] [Related]
5. Neurites from mouse retina and dorsal root ganglion explants show specific behavior within co-cultured tectum or spinal cord. Smalheiser NR; Peterson ER; Crain SM Brain Res; 1981 Mar; 208(2):499-505. PubMed ID: 7214158 [TBL] [Abstract][Full Text] [Related]
6. Networks formed by dorsal root ganglion neurites within spinal cord explants: a computer-aided analysis of HRP intracellularly labeled neurons. Calvet MC; Calvet J; Teilhac JR; Drian MJ Brain Res; 1992 Jul; 584(1-2):1-10. PubMed ID: 1515930 [TBL] [Abstract][Full Text] [Related]
7. Development of ganglion cells and their axons in organized cultures of fetal mouse retinal explants. Smalheiser NR; Crain SM; Bornstein MB Brain Res; 1981 Jan; 204(1):159-78. PubMed ID: 6166351 [TBL] [Abstract][Full Text] [Related]
8. Regeneration of dorsal root axons into experimentally altered glial environments in the rat spinal cord. Sims TJ; Gilmore SA Exp Brain Res; 1994; 99(1):25-33. PubMed ID: 7523172 [TBL] [Abstract][Full Text] [Related]
9. Development of Met-enkephalin immunoreactivity in organotypic explants of fetal mouse spinal cord and attached dorsal root ganglia. Chalazonitis A; Groth J; Hiller JM; Simon EJ; Crain SM Brain Res; 1984 Feb; 314(2):183-9. PubMed ID: 6704747 [TBL] [Abstract][Full Text] [Related]
10. Sensory innervation of the rat kidney and ureter as revealed by the anterograde transport of wheat germ agglutinin-horseradish peroxidase (WGA-HRP) from dorsal root ganglia. Marfurt CF; Echtenkamp SF J Comp Neurol; 1991 Sep; 311(3):389-404. PubMed ID: 1720146 [TBL] [Abstract][Full Text] [Related]
11. Maturation of opioid sensitivity of fetal mouse dorsal root ganglion neuron perikarya in organotypic cultures: regulation by spinal cord. Chalazonitis A; Crain SM Neuroscience; 1986 Apr; 17(4):1181-98. PubMed ID: 3520378 [TBL] [Abstract][Full Text] [Related]
12. Regeneration of motoneuron axons into the adult frog spinal cord after ventral-to-dorsal-root anastomosis. Liuzzi FJ; Lasek RJ J Comp Neurol; 1986 May; 247(1):111-22. PubMed ID: 3486892 [TBL] [Abstract][Full Text] [Related]
13. Human muscle cultured in monolayer and cocultured with fetal rat spinal cord: importance of dorsal root ganglia for achieving successful functional innervation. Kobayashi T; Askanas V; Engel WK J Neurosci; 1987 Oct; 7(10):3131-41. PubMed ID: 3668620 [TBL] [Abstract][Full Text] [Related]
14. Preferential cholinergic projections by embryonic spinal cord neurons within cocultured mouse superior cervical ganglia. Chalazonitis A; Crain SM; Kessler JA Brain Res; 1988 Aug; 458(2):231-48. PubMed ID: 3208105 [TBL] [Abstract][Full Text] [Related]
15. Horseradish peroxidase tracing of dorsal root ganglion afferents within fetal mouse spinal cord explants chronically exposed to tetrodotoxin. Baker RE Brain Res; 1985 May; 334(2):357-60. PubMed ID: 3995326 [TBL] [Abstract][Full Text] [Related]
16. Presence of leucine-enkephalin in organotypic explants of fetal mouse spinal cord. Naftchi NE; Abrahams SJ; Crain SM; Peterson ER; Hiller JM; Simon EJ Peptides; 1981; 2 Suppl 1():57-60. PubMed ID: 7267405 [TBL] [Abstract][Full Text] [Related]
17. Development of cross-tolerance to 5-hydroxytryptamine in organotypic cultures of mouse spinal cord-ganglia during chronic exposure to morphine. Crain SM; Crain B; Peterson ER Life Sci; 1982 Jul; 31(3):241-7. PubMed ID: 7121205 [TBL] [Abstract][Full Text] [Related]
18. Distribution of lumbar dorsal root fibers in the lower thoracic and lumbosacral spinal cord of the rat studied with choleragenoid horseradish peroxidase conjugate. Rivero-Melián C; Grant G J Comp Neurol; 1990 Sep; 299(4):470-81. PubMed ID: 2243162 [TBL] [Abstract][Full Text] [Related]
19. Some functional effects of suppressing bioelectric activity in fetal mouse spinal cord-dorsal root ganglion explants. Baker RE; Corner MA; Lammertse T; Furth E Exp Neurol; 1986 Nov; 94(2):426-30. PubMed ID: 3770131 [TBL] [Abstract][Full Text] [Related]
20. Tissues exhibiting inhibitory [correction of inhibiory] and repulsive activities during the initial stages of neurite outgrowth from the dorsal root ganglion in the chick embryo. Nakamoto K; Shiga T Dev Biol; 1998 Oct; 202(2):304-14. PubMed ID: 9769181 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]