BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 6169721)

  • 21. The different routes of calcium efflux from liver mitochondria.
    Kröner H
    Biol Chem Hoppe Seyler; 1992 May; 373(5):229-35. PubMed ID: 1378282
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides.
    Lehninger AL; Vercesi A; Bababunmi EA
    Proc Natl Acad Sci U S A; 1978 Apr; 75(4):1690-4. PubMed ID: 25436
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energy-conserving reactions in phosphorylating electron-transport particles from Nitrobacter winogradskyi. Activation of nitrite oxidation by the electrical component of the protonmotive force.
    Cobley JG
    Biochem J; 1976 Jun; 156(3):481-91. PubMed ID: 182152
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calcium efflux mechanism in sperm mitochondria.
    Breitbart H; Rubinstein S; Gruberger M
    Biochim Biophys Acta; 1996 Jun; 1312(2):79-84. PubMed ID: 8672542
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An increase of the energy coupling capacity of submitochondrial particles by lanthanides.
    Grivennikova VG; Gavrikova EV; Vinogradov AD
    FEBS Lett; 1994 Jun; 347(2-3):243-6. PubMed ID: 8034011
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An increase in the energy coupling capacity of submitochondrial particles in the presence of lanthanides.
    Grivennikova VG; Gavrikova EV; Vinogradov AD
    FEBS Lett; 1994 Aug; 349(3):403-6. PubMed ID: 8050604
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of uncouplers on endogenous respiration and ferrous iron oxidation in a chemolithoautotrophic bacterium Acidithiobacillus (Thiobacillus) ferrooxidans.
    Chen Y; Suzuki I
    FEMS Microbiol Lett; 2004 Aug; 237(1):139-45. PubMed ID: 15268949
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stability of membrane potential in heart mitochondria: single mitochondrion imaging.
    Uechi Y; Yoshioka H; Morikawa D; Ohta Y
    Biochem Biophys Res Commun; 2006 Jun; 344(4):1094-101. PubMed ID: 16647039
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The redox state of endogenous pyridine nucleotides can determine both the degree of mitochondrial oxidative stress and the solute selectivity of the permeability transition pore.
    Zago EB; Castilho RF; Vercesi AE
    FEBS Lett; 2000 Jul; 478(1-2):29-33. PubMed ID: 10922464
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The nature of the calcium ion efflux induced in rat liver mitochondria by the oxidation of endogenous nicotinamide nucleotides.
    Nicholls DG; Brand MD
    Biochem J; 1980 Apr; 188(1):113-8. PubMed ID: 7406874
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of calcium on mitochondrial NAD(P)H in paced rat ventricular myocytes.
    White RL; Wittenberg BA
    Biophys J; 1995 Dec; 69(6):2790-9. PubMed ID: 8599685
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effects of partial uncoupling upon the kinetics of ATP synthesis by vesicles from Paracoccus denitrificans and by bovine heart submitochondrial particles. Implications for the mechanism of the proton-translocating ATP synthase.
    McCarthy JE; Ferguson SJ
    Eur J Biochem; 1983 May; 132(2):425-31. PubMed ID: 6301834
    [TBL] [Abstract][Full Text] [Related]  

  • 33. -->H+/2e- stoichiometry in NADH-quinone reductase reactions catalyzed by bovine heart submitochondrial particles.
    Galkin AS; Grivennikova VG; Vinogradov AD
    FEBS Lett; 1999 May; 451(2):157-61. PubMed ID: 10371157
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ba2+ ions inhibit the release of Ca2+ ions from rat liver mitochondria.
    Lukács GL; Fonyó A
    Biochim Biophys Acta; 1985 Sep; 809(2):160-6. PubMed ID: 2412581
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relationships between the NAD(P) redox state, fatty acid oxidation, and inner membrane permeability in rat liver mitochondria.
    Lê-Quôc D; Lê-Quôc K
    Arch Biochem Biophys; 1989 Sep; 273(2):466-78. PubMed ID: 2774563
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The direct physiological effects of mitoK(ATP) opening on heart mitochondria.
    Costa AD; Quinlan CL; Andrukhiv A; West IC; Jabůrek M; Garlid KD
    Am J Physiol Heart Circ Physiol; 2006 Jan; 290(1):H406-15. PubMed ID: 16143645
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition by Sr2+ of specific mitochondrial Ca2+-efflux pathways.
    Saris NE; Bernardi P
    Biochim Biophys Acta; 1983 Oct; 725(1):19-24. PubMed ID: 6194819
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The mitochondrial permeability transition pore is modulated by oxidative agents through both pyridine nucleotides and glutathione at two separate sites.
    Chernyak BV; Bernardi P
    Eur J Biochem; 1996 Jun; 238(3):623-30. PubMed ID: 8706660
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The participation of pyridine nucleotides redox state and reactive oxygen in the fatty acid-induced permeability transition in rat liver mitochondria.
    Catisti R; Vercesi AE
    FEBS Lett; 1999 Dec; 464(1-2):97-101. PubMed ID: 10611491
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Matrix magnesium and the permeability of heart mitochondria to potassium ion.
    Jung DW; Brierley GP
    J Biol Chem; 1986 May; 261(14):6408-15. PubMed ID: 3084482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.