These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 6170070)

  • 1. Gelation and crystallization of sickle (Hb S and Hb C Harlem) and non-sickle hemoglobins (Hb A and Hb C) in concentrated phosphate buffer.
    Adachi K; Asakura T
    Prog Clin Biol Res; 1981; 55():123-44. PubMed ID: 6170070
    [No Abstract]   [Full Text] [Related]  

  • 2. Kinetics of the polymerization of hemoglobin in high and low phosphate buffers.
    Adachi K; Asakura T
    Blood Cells; 1982; 8(2):213-24. PubMed ID: 6186320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The solubility of sickle and non-sickle hemoglobins in concentrated phosphate buffer.
    Adachi K; Asakura T
    J Biol Chem; 1979 May; 254(10):4079-84. PubMed ID: 35534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of different beta73 amino acids on formation of 14-stranded fibers of Hb S versus double-stranded crystals of Hb C-Harlem.
    Adachi K; Ding M; Wehrli S; Reddy KS; Surrey S; Horiuchi K
    Biochemistry; 2003 Apr; 42(15):4476-84. PubMed ID: 12693943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface hydrophobicity and solubility of Hb S.
    Adachi K
    Prog Clin Biol Res; 1987; 240():21-30. PubMed ID: 2441415
    [No Abstract]   [Full Text] [Related]  

  • 6. Aggregation and crystallization of hemoglobins A, S, and C. Probable formation of different nuclei for gelation and crystallization.
    Adachi K; Asakura T
    J Biol Chem; 1981 Feb; 256(4):1824-30. PubMed ID: 7462225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of other hemoglobins on gelation of sickle cell hemoglobin.
    Sunshine HR
    Tex Rep Biol Med; 1980-1981; 40():233-50. PubMed ID: 6172866
    [No Abstract]   [Full Text] [Related]  

  • 8. Effect of the beta 73 amino acid on the hydrophobicity, solubility, and the kinetics of polymerization of deoxyhemoglobin S.
    Adachi K; Kim J; Kinney TR; Asakura T
    J Biol Chem; 1987 Aug; 262(22):10470-4. PubMed ID: 3611079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Demonstration of a delay time during aggregation of diluted solutions of deoxyhemoglobin S and hemoglobin CHarlem in concentrated phosphate buffer.
    Adachi K; Asakura T
    J Biol Chem; 1978 Oct; 253(19):6641-3. PubMed ID: 690112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gelation of deoxyhemoglobin A in concentrated phosphate buffer. Exhibition of delay time prior to aggregation and crystallization of deoxyhemoglobin A.
    Adachi K; Asakura T
    J Biol Chem; 1979 Dec; 254(24):12273-6. PubMed ID: 500713
    [No Abstract]   [Full Text] [Related]  

  • 11. Separation of hemoglobin variants with similar charge by capillary isoelectric focusing: value of isoelectric point for identification of common and uncommon hemoglobin variants.
    Hempe JM; Craver RD
    Electrophoresis; 2000 Mar; 21(4):743-8. PubMed ID: 10733215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simplified hemoglobin chain detection by capillary electrophoresis.
    Shihabi ZK; Hinsdale ME
    Electrophoresis; 2005 Feb; 26(3):581-5. PubMed ID: 15690430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The inhibition of hemoglobin C crystallization by hemoglobin F.
    Hirsch RE; Lin MJ; Nagel RL
    J Biol Chem; 1988 Apr; 263(12):5936-9. PubMed ID: 2451674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of amino acid at the beta 6 position on surface hydrophobicity, stability, solubility, and the kinetics of polymerization of hemoglobin. Comparisons among Hb A (Glu beta 6), Hb C (Lys beta 6), Hb Machida (Gln beta 6), and Hb S (Val beta 6).
    Adachi K; Kim J; Travitz R; Harano T; Asakura T
    J Biol Chem; 1987 Sep; 262(27):12920-5. PubMed ID: 2888754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in the reaction sequences associated with drug-induced oxidation of hemoglobins E, S, A, and F.
    Macdonald VW; Charache S
    J Lab Clin Med; 1983 Nov; 102(5):762-72. PubMed ID: 6195277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of organic compounds on the crystal habit and crystallization of normal and sickle cell hemoglobin in phosphate buffer.
    Farnell KJ; McMeekin TL
    Arch Biochem Biophys; 1973 Oct; 158(2):702-10. PubMed ID: 4782530
    [No Abstract]   [Full Text] [Related]  

  • 17. Mass spectral analysis of asymmetric hemoglobin hybrids: demonstration of Hb FS (alpha2gammabetaS) in sickle cell disease.
    Ofori-Acquah SF; Green BN; Davies SC; Nicolaides KH; Serjeant GR; Layton DM
    Anal Biochem; 2001 Nov; 298(1):76-82. PubMed ID: 11673898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of three methods for quantitation of variant hemoglobin fractions.
    Pearce CJ
    Am J Med Technol; 1980 Oct; 46(10):698-703. PubMed ID: 7211934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of dynamic capillary isoelectric focusing to the analysis of human hemoglobin variants.
    Molteni S; Frischknecht H; Thormann W
    Electrophoresis; 1994 Jan; 15(1):22-30. PubMed ID: 7511528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mixed gelation theory. Kinetics, equilibrium and gel incorporation in sickle hemoglobin mixtures.
    Behe MJ; Englander SW
    J Mol Biol; 1979 Sep; 133(1):137-60. PubMed ID: 93643
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.