These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 6170219)

  • 1. Biochemical controls of liver cholesterol biosynthesis.
    Ott DB; Lachance PA
    Am J Clin Nutr; 1981 Oct; 34(10):2295-306. PubMed ID: 6170219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Participation of food lipids in regulating cholesterol biosynthesis in the body].
    Sharmanov TSh; Maksimenko VB
    Vopr Pitan; 1981; (4):3-7. PubMed ID: 6170168
    [No Abstract]   [Full Text] [Related]  

  • 3. Regulation of hepatic cholesterogenesis.
    Goldfarb S
    Int Rev Physiol; 1980; 21():317-56. PubMed ID: 6993398
    [No Abstract]   [Full Text] [Related]  

  • 4. [Activities of 3-hydroxy-3-methylglutaryl-CoA reductase and acetyl-CoA carboxylase and rate of biosynthesis of mevalonic acid, squalene, sterols and fatty acids from [1-14C]acetyl-CoA and [2-14C]malonyl-CoA in rat liver: changes induced by daily rhythm].
    Poliakova ED; Dizhe EB; Klimova TA; Denisenko TV; Vasil'eva LE
    Biokhimiia; 1981 Jan; 46(1):126-39. PubMed ID: 6113851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of cholesterol biosynthesis and acetyl-coenzyme A synthetase by bovine milk and orotic acid.
    Bernstein BA; Richardson T; Amundson CH
    J Dairy Sci; 1977 Dec; 60(12):1846-53. PubMed ID: 23394
    [No Abstract]   [Full Text] [Related]  

  • 6. [Formation of mevalonic acid, sterols and bile acids from [1-14C]acetyl-CoA and [2-14C]malonyl-CoA in the liver of rabbits with experimental hypercholesterolemia].
    Klimov AN; Poliakova ED; Vasil'eva LE; Denisenko TV; Dizhe EB
    Biokhimiia; 1987 Feb; 52(2):239-46. PubMed ID: 2882784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The role of different pathways of mevalonate synthesis in the regulation of sterol and bile acid synthesis in the mammalian liver].
    Poliakova ED; Denisenko TV; Dizhe EB; Klimova TA; Vasil'eva LE
    Ukr Biokhim Zh (1978); 1984; 56(3):268-75. PubMed ID: 6147036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the control of cholesterol synthesis.
    Bortz WM
    Metabolism; 1973 Dec; 22(12):1507-24. PubMed ID: 4206254
    [No Abstract]   [Full Text] [Related]  

  • 9. Some aspects of the control of hepatic cholesterol biosynthesis.
    Gould RG
    Expos Annu Biochim Med; 1977; 33():13-38. PubMed ID: 891895
    [No Abstract]   [Full Text] [Related]  

  • 10. Regulation of cholesterol biosynthesis in rat liver: diurnal changes of activity and influence of bile acids.
    Back P; Hamprecht B; Lynen F
    Arch Biochem Biophys; 1969 Aug; 133(1):11-21. PubMed ID: 5810824
    [No Abstract]   [Full Text] [Related]  

  • 11. Regulation of cholesterol biosynthesis.
    Rudney H; Sexton RC
    Annu Rev Nutr; 1986; 6():245-72. PubMed ID: 3524618
    [No Abstract]   [Full Text] [Related]  

  • 12. Lipoprotein metabolism by rat hepatomas. Studies on the etiology of defective dietary feedback inhibition of cholesterol synthesis.
    Barnard GF; Erickson SK; Cooper AD
    J Clin Invest; 1984 Jul; 74(1):173-84. PubMed ID: 6330173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Biosynthesis of mevalonic acid, sterols and bile acids from acetyl-CoA and malonyl-CoA in the human liver].
    Klimov AN; Poliakova ED; Klimova TA; Dizhe EB; Vasil'eva LE
    Biokhimiia; 1983 Nov; 48(11):1862-9. PubMed ID: 6661459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of bile salts in controlling the rate of intestinal cholesterogenesis.
    Dietschy JM
    J Clin Invest; 1968 Feb; 47(2):286-300. PubMed ID: 4966200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Biosynthesis of cholic and chenodeoxycholic acids from [1-14C]acetyl-CoA and [2-14C]malonyl-CoA in a reconstituted system from the rat liver].
    Poliakova ED; Vasil'eva LE; Denisenko TV; Dizhe EB; Klimova TA; Petrova LA; Klimov AN
    Biokhimiia; 1981 Mar; 46(3):462-72. PubMed ID: 7236804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of acylcoenzyme A. Cholesterol acyltransferase and 3-hydroxy-3-methylglutaryl coenzyme A reductase activity by lipoproteins in the intestine of parabiont rats.
    Purdy BH; Field FJ
    J Clin Invest; 1984 Aug; 74(2):351-7. PubMed ID: 6746898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A discoordinate increase in the cellular amount of 3-hydroxy-3-methylglutaryl-CoA reductase results in the loss of rate-limiting control over cholesterogenesis in a tumour cell-free system.
    Azrolan NI; Coleman PS
    Biochem J; 1989 Mar; 258(2):421-5. PubMed ID: 2705993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cholesterol and cancer: comparative biochemistry and selective toxicity.
    Paola F
    Med Hypotheses; 1989 Feb; 28(2):115-20. PubMed ID: 2927353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cholesterol synthesis in germfree and conventional rats.
    Ukai M; Tomura A; Ito M
    J Nutr; 1976 Aug; 106(8):1175-83. PubMed ID: 939998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors influencing cholesterol biosynthesis in rat liver.
    Nutr Rev; 1970 Feb; 28(2):49-51. PubMed ID: 4908585
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.