BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 6170255)

  • 1. Enhanced transmembrane proton conductance in Streptococcus mutans GS-5 due to ionophores and fluoride.
    Eisenberg AD; Marquis RE
    Antimicrob Agents Chemother; 1981 May; 19(5):807-12. PubMed ID: 6170255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction in the aciduric properties of the oral bacterium Streptococcus mutans GS-5 by fluoride.
    Eisenberg AD; Bender GR; Marquis RE
    Arch Oral Biol; 1980; 25(2):133-5. PubMed ID: 6157382
    [No Abstract]   [Full Text] [Related]  

  • 3. Acid sensitivity of glycolysis in normal and proton-permeable cells of Streptococcus mutans GS-5.
    Thibodeau EA; Marquis RE
    J Dent Res; 1983 Nov; 62(11):1174-8. PubMed ID: 6196387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Ionophores CCCP and Gramicidin but Not Nigericin Inhibit
    Petersen LM; Beitz E
    Cells; 2020 Oct; 9(10):. PubMed ID: 33096791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of sub-lethal doses of valinomycin, gramicidin D and m-chlorocarbonylcyanidephenylhydrazone (CCP) on the heat resistance of the goldfish, Carassium auratus L.
    Morton W
    Comp Biochem Physiol C Comp Pharmacol; 1978; 59(1):1-4. PubMed ID: 75781
    [No Abstract]   [Full Text] [Related]  

  • 6. Reduction of acidurance of streptococcal growth and glycolysis by fluoride and gramicidin.
    Bender GR; Thibodeau EA; Marquis RE
    J Dent Res; 1985 Feb; 64(2):90-5. PubMed ID: 2579114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Weak acid effects and fluoride inhibition of glycolysis by Streptococcus mutans GS-5.
    Belli WA; Buckley DH; Marquis RE
    Can J Microbiol; 1995 Sep; 41(9):785-91. PubMed ID: 7585355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for the involvement of proton motive force in the transport of glucose by a mutant of Streptococcus mutans strain DR0001 defective in glucose-phosphoenolpyruvate phosphotransferase activity.
    Hamilton IR; St Martin EJ
    Infect Immun; 1982 May; 36(2):567-75. PubMed ID: 6282753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of monovalent cation ionophores on calcium uptake by rabbit skeletal muscle sarcoplasmic reticulum vesicles.
    Louis CF; Fudyma G; Nash-Adler P; Shigekawa M; Katz AM
    FEBS Lett; 1978 Sep; 93(1):61-4. PubMed ID: 81144
    [No Abstract]   [Full Text] [Related]  

  • 10. Evaluation of Streptococcus mutans biofilms formed on fluoride releasing and non fluoride releasing resin composites.
    Pandit S; Kim GR; Lee MH; Jeon JG
    J Dent; 2011 Nov; 39(11):780-7. PubMed ID: 21889566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of ionophores on the phospholipid flippase activity of gastric vesicles.
    Suzuki H; Morii M; Takeguchi N
    Jpn J Physiol; 1999 Oct; 49(5):431-6. PubMed ID: 10603427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of metal ion free valinomycin-carbonyl cyanide m-chlorophenylhydrazone complex in the enhancement of the rates of gramicidin facilitated net H+, Li+ and Na+ transport across phospholipid vesicular membrane.
    Prabhananda BS; Kombrabail MH
    Biochim Biophys Acta; 1997 Jan; 1323(1):137-44. PubMed ID: 9030220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstitution of bacteriorhodopsin and ATP synthase from Micrococcus luteus into liposomes of the purified main tetraether lipid from Thermoplasma acidophilum: proton conductance and light-driven ATP synthesis.
    Freisleben HJ; Zwicker K; Jezek P; John G; Bettin-Bogutzki A; Ring K; Nawroth T
    Chem Phys Lipids; 1995 Nov; 78(2):137-47. PubMed ID: 8565113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutual inactivation of valinomycin and protonophores by complex formation in liposomal membranes.
    Krishnamoorthy G
    FEBS Lett; 1988 May; 232(1):199-203. PubMed ID: 2835269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Permeability change in transformed mouse fibroblasts caused by ionophores, and its relationship to membrane permeabilization by exogenous ATP.
    Friedberg I; Weisman GA; De BK
    J Membr Biol; 1985; 83(3):251-9. PubMed ID: 3999123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for an ATP-driven proton pump in rat thyroid phagolysosomes. Effects of protonophores and ionophores.
    Fouchier F; Dang J
    Eur J Biochem; 1983 Nov; 136(3):553-7. PubMed ID: 6315434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of ionophores on phosphate and arsenate transport in Micrococcus lysodeikticus.
    Friedberg I
    FEBS Lett; 1977 Sep; 81(2):264-6. PubMed ID: 21813
    [No Abstract]   [Full Text] [Related]  

  • 18. Role of the cell membrane in pH-dependent fluoride inhibition of glucose uptake by Streptococcus mutans.
    Germaine GR; Tellefson LM
    Antimicrob Agents Chemother; 1986 Jan; 29(1):58-61. PubMed ID: 3729335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluoride and organic weak acids as respiration inhibitors for oral streptococci in acidified environments.
    Phan TN; Nguyen PT; Abranches J; Marquis RE
    Oral Microbiol Immunol; 2002 Apr; 17(2):119-24. PubMed ID: 11929560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH gradient effects on chloride transport across basolateral membrane vesicles from guinea-pig jejunum.
    Touzani K; Alvarado F; Vasseur M
    J Physiol; 1997 Apr; 500 ( Pt 2)(Pt 2):385-400. PubMed ID: 9147326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.