These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 6170535)

  • 1. Sites of action of trifluoperazine in the inhibition of glucose-stimulated insulin release.
    Janjic D; Wollheim CB; Siegel EG; Krausz Y; Sharp GW
    Diabetes; 1981 Nov; 30(11):960-6. PubMed ID: 6170535
    [No Abstract]   [Full Text] [Related]  

  • 2. Possible role for calmodulin in insulin release. Studies with trifluoperazine in rat pancreatic islets.
    Krausz Y; Wollheim CB; Siegel E; Sharp GW
    J Clin Invest; 1980 Sep; 66(3):603-7. PubMed ID: 6156956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cobalt inhibition of insulin release: evidence for an action not related to Ca2+ uptake.
    Wollheim CB; Janjic D
    Am J Physiol; 1984 Jan; 246(1 Pt 1):C57-62. PubMed ID: 6198924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential rates of release of newly synthesized and of stored insulin from pancreatic islets.
    Halban PA
    Endocrinology; 1982 Apr; 110(4):1183-8. PubMed ID: 6174318
    [No Abstract]   [Full Text] [Related]  

  • 5. Control of secretion vesicle margination and lysis by glucose, IBMX, and glyburide.
    Draznin B; Steinberg JP; Goodman M; Leitner JW; Sussman KE
    Am J Physiol; 1985 Mar; 248(3 Pt 1):E375-80. PubMed ID: 2579575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of trifluoperazine and pimozide on stimulus-secretion coupling in pancreatic B-cells. Suggestion for a role of calmodulin?
    Henquin JC
    Biochem J; 1981 Jun; 196(3):771-80. PubMed ID: 6274321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trifluoperazine reproduces in rat islets the effects of calcium omission on insulin secretion and de novo lipid synthesis, without affecting 45Ca2(+)-uptake.
    Vara E; García C; Tamarit-Rodríguez J
    Rev Esp Fisiol; 1990 Jun; 46(2):163-9. PubMed ID: 2274700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein phosphorylation in the pancreatic B-cell.
    Harrison DE; Ashcroft SJ; Christie MR; Lord JM
    Experientia; 1984 Oct; 40(10):1075-84. PubMed ID: 6208050
    [No Abstract]   [Full Text] [Related]  

  • 9. The stimulus-secretion coupling of glucose-induced insulin release. XLVII. The possible role of calmodulin.
    Valverde I; Sener A; Lebrun P; Herchuelz A; Malaisse WJ
    Endocrinology; 1981 Apr; 108(4):1305-12. PubMed ID: 7009149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclic AMP-dependent protein phosphorylation and insulin secretion in intact islets of Langerhans.
    Christie MR; Ashcroft SJ
    Biochem J; 1984 Feb; 218(1):87-99. PubMed ID: 6201163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insulin release. Demonstration of a priming effect of 3-isobutyl-1-methyl-xanthine (IBMX) on islets of Langerhans.
    Wiedenkeller DE; Sharp GW
    Diabetes; 1981 Sep; 30(9):754-6. PubMed ID: 6167480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Granule fusion and fission (discharge) are biochemically dissociable events of exocytotic hormone release.
    Sussman KE; Pollard HB; Leitner JW; Nesher R; Adler J; Cerasi E
    Trans Assoc Am Physicians; 1982; 95():299-309. PubMed ID: 6190296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calmodulin dependency of induced glucose responsiveness in neonatal islets.
    Dunlop M; Larkins RG; Court JM
    Horm Metab Res; 1983 Oct; 15(10):514-5. PubMed ID: 6357981
    [No Abstract]   [Full Text] [Related]  

  • 14. Calcium-binding proteins and insulin release. Differential effects of phenothiazines on first- and second-phase secretion and on islet cAMP response to glucose.
    Krausz Y; Eylon L; Cerasi E
    Acta Endocrinol (Copenh); 1987 Oct; 116(2):241-6. PubMed ID: 2444058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of tetracaine on insulin release and calcium handling by rat pancreatic islets.
    el Motal SM; Pian-Smith MC; Sharp GW
    Am J Physiol; 1987 Jun; 252(6 Pt 1):E727-33. PubMed ID: 2438944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The stimulus-secretion coupling of glucose-induced insulin release. LIII. Calcium-dependency of the cyclic AMP response to nutrient secretagogues.
    Valverde I; Garcia-Morales P; Ghiglione M; Malaisse WJ
    Horm Metab Res; 1983; 15(2):62-8. PubMed ID: 6186592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence that glucose "marks" beta cells resulting in preferential release of newly synthesized insulin.
    Gold G; Gishizky ML; Grodsky GM
    Science; 1982 Oct; 218(4567):56-8. PubMed ID: 6181562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biphasic insulin release in rat islets of Langerhans and the role of Intracellular Ca++ stores.
    Kikuchi M; Wollheim CB; Siegel EG; Renold AE; Sharp GW
    Endocrinology; 1979 Oct; 105(4):1013-9. PubMed ID: 383467
    [No Abstract]   [Full Text] [Related]  

  • 19. Influence of thiol groups, calcium, and glucose metabolism on cholinergic-induced insulin release and on methylscopolamine binding to muscarinic receptors in pancreatic islets of the rat.
    Grill V; Fåk K
    Acta Endocrinol (Copenh); 1985 Jul; 109(3):355-60. PubMed ID: 2411095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Presence and possible role of calcium-dependent regulator (calmodulin) in rat islets of Langerhans.
    Sugden MC; Christie MR; Ashcroft SJ
    FEBS Lett; 1979 Sep; 105(1):95-100. PubMed ID: 226410
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.