These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 6170732)

  • 1. Inhibition of axoplasmic transport in the optic system by kainic acid.
    Gomez-Ramos P; Donoso JA; Samson FE
    J Neurochem; 1981 Nov; 37(5):1179-85. PubMed ID: 6170732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological alterations of retinal cells accompanying inhibition of axonal transport by kainic acid.
    Gómez-Ramos P; Pérez-Rico C
    Exp Eye Res; 1983 Feb; 36(2):299-304. PubMed ID: 6186510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intraocular kainic acid injection suppresses fast axonal transport in the developing rat optic nerve.
    Riccio RV; Calle RP; Matthews MA
    J Neurosci Res; 1985; 14(3):339-45. PubMed ID: 2414459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kainic acid prevents peroxidase labeling of retinal ganglion cell bodies in the rat: a possible gate in retrograde axonal transport.
    Gomez-Ramos P; Reinoso-Suarez F
    Neurosci Lett; 1983 Jan; 35(1):1-6. PubMed ID: 6189033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of intraocular injection of tetrodotoxin on fast axonal transport of [3H]proline- and [3H]fucose-labeled materials in the developing rat optic nerve.
    Riccio RV; Matthews MA
    Neuroscience; 1985 Dec; 16(4):1027-39. PubMed ID: 2419784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of axonal transport in the rat optic system after direct application of methylmercury.
    Aschner M; Rodier PM; Finkelstein JN
    Brain Res; 1986 Sep; 381(2):244-50. PubMed ID: 2428435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monensin induces distortion of optic nerve crossing at the chick embryo chiasm.
    Nakayama T; Furuya S
    Exp Brain Res; 1989; 76(3):559-62. PubMed ID: 2477269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of axoplasmic transport in the developing visual system of the rat-II, Quantitative analysis of alterations in transport of tritiated proline or fucose.
    Matthews MA; West LC; Clarkson DB
    Neuroscience; 1982 Feb; 7(2):385-404. PubMed ID: 6176908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Axonal transport and metabolism of [3H]fucose- and [35S]-sulfate-labeled macromolecules in the rat visual system.
    Goodrum JF; Toews AD; Morell P
    Brain Res; 1979 Nov; 176(2):255-72. PubMed ID: 91405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Axoplasmic and nonaxoplasmic transport along the optic pathway of albino rabbits; a theoretical pattern of distribution.
    Chihara E
    Invest Ophthalmol Vis Sci; 1979 Apr; 18(4):339-45. PubMed ID: 85609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Posttranslational modification of a neurofilament protein during axoplasmic transport: implications for regional specialization of CNS axons.
    Nixon RA; Brown BA; Marotta CA
    J Cell Biol; 1982 Jul; 94(1):150-8. PubMed ID: 6181078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anterograde axoplasmic transport of peroxidase in the rat visual system after intraocular neurotoxin injection.
    Gomez-Ramos P; Perez-Rico C; Reinoso-Suarez F
    Brain Res; 1984 Jan; 290(2):211-8. PubMed ID: 6198040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes of electroretinogram and neurochemical aspects of GABAergic neurons of retina after intraocular injection of kainic acid in rats.
    Goto M; Inomata N; Ono H; Saito KI; Fukuda H
    Brain Res; 1981 May; 211(2):305-14. PubMed ID: 7237125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of axoplasmic transport in the developing visual system of the rat-L Structural changes in the retina and optic nerve with graded doses of intraocular colchicine.
    Matthews MA; Cornell WJ; Alchediak T
    Neuroscience; 1982 Feb; 7(2):365-84. PubMed ID: 6176907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A light microscopic, autoradiographic study of axoplasmic transport in the normal rhesus optic nerve head.
    Minckler DS; Tso MO
    Am J Ophthalmol; 1976 Jul; 82(1):1-15. PubMed ID: 59548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of kainic acid lesions in lateral geniculate nucleus: activity dependence of retrograde axonal transport of fluorescent dyes.
    Woodward WR; Coull BM
    Brain Res; 1988 Jun; 454(1-2):106-15. PubMed ID: 2457407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extra-axonal diffusion in the rabbit optic system: a caution in axonal transport studies.
    Haley JE; Wisniewski HM; Ledeen RW
    Brain Res; 1979 Dec; 179(1):69-76. PubMed ID: 92351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein degradation in the mouse visual system. I. Degradation of axonally transported and retinal proteins.
    Nixon RA
    Brain Res; 1980 Oct; 200(1):69-83. PubMed ID: 6158362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of low IOP and low calcium on retrograde axoplasmic transport in rat optic nerve in vitro.
    Johansson JO
    Exp Eye Res; 1985 Dec; 41(6):739-44. PubMed ID: 2420629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kainic acid intraocular injections during the postnatal critical period induce plastic changes in the visual system.
    Pérez-Rico C; de la Villa P; Reinoso-Suárez F; Gómez-Ramos P
    Neurosci Res; 2009 Apr; 63(4):244-50. PubMed ID: 19167438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.