These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 6170732)

  • 41. Synthesis, axonal transport, and turnover of the high molecular weight microtubule-associated protein MAP 1A in mouse retinal ganglion cells: tubulin and MAP 1A display distinct transport kinetics.
    Nixon RA; Fischer I; Lewis SE
    J Cell Biol; 1990 Feb; 110(2):437-48. PubMed ID: 1688856
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Direction and specificity of the axonal and transcellular transport of nucleosides.
    Wise SP; Jones EG; Berman N
    Brain Res; 1978 Jan; 139(2):197-217. PubMed ID: 75037
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Posttranslational processing of alpha-tubulin during axoplasmic transport in CNS axons.
    Brown BA; Nixon RA; Marotta CA
    J Cell Biol; 1982 Jul; 94(1):159-64. PubMed ID: 6181079
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Correlation between axoplasmic transport and occurrence or recovery of optic nerve involvement. Part 3. Colchicine effect on the axoplasmic transport and action potentials (author's transl)].
    Toyota Y
    Nippon Ganka Gakkai Zasshi; 1980 Sep; 84(9):1136-42. PubMed ID: 6164276
    [No Abstract]   [Full Text] [Related]  

  • 45. Further study of the outward displacement of retinal ganglion cells during optic nerve regeneration, with a note on the normal cells of Dogiel in the adult frog.
    Singman EL; Scalia F
    J Comp Neurol; 1990 Nov; 301(1):80-92. PubMed ID: 2077052
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Intraocular tetrodotoxin reduces axonal transport and transcellular transfer of adenosine and other nucleosides in the visual system of goldfish.
    Edwards DL; Grafstein B
    Brain Res; 1986 Feb; 364(2):258-67. PubMed ID: 2418917
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The aberrant retino-retinal projection during optic nerve regeneration in the frog. I. Time course of formation and cells of origin.
    Bohn RC; Stelzner DJ
    J Comp Neurol; 1981 Mar; 196(4):605-20. PubMed ID: 6970756
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [The effect of adrenaline, pilocarpine and timolol on axoplasmic transport in the optic nerve. I. Findings in normotensive eyes].
    Brozek B; Krejcí L; Brettschneider I
    Cesk Oftalmol; 1985 Feb; 41(1):13-6. PubMed ID: 2418984
    [No Abstract]   [Full Text] [Related]  

  • 49. Action of chloroquine on in vivo RNA and protein biosynthesis in the retina and the optic pathway of the rabbit.
    Karlsson JO; Stella-Guiffrida AM; Jarlstedt J; McLean WG; Serra I; Sjöstrand J
    J Neurol Sci; 1976 Dec; 30(2-3):237-45. PubMed ID: 1003247
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Comparison of the effect of timolol and metipranolol on axoplasmic transport in the optic nerve].
    Brozek B; Krejcí L; Brettschneider I
    Cesk Oftalmol; 1984 Sep; 40(5):276-81. PubMed ID: 6209024
    [No Abstract]   [Full Text] [Related]  

  • 51. Effect of intraocular pressure on rapid axoplasmic transport in monkey optic nerve.
    Anderson DR; Hendrickson A
    Invest Ophthalmol; 1974 Oct; 13(10):771-83. PubMed ID: 4137635
    [No Abstract]   [Full Text] [Related]  

  • 52. Localization of kainic acid-sensitive cells in mammalian retina.
    Hampton CK; Garcia C; Redburn DA
    J Neurosci Res; 1981; 6(1):99-111. PubMed ID: 7218375
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Kainic acid differently affects retinal projections to different pretectal nuclei.
    Lui F; Benassi C; Biral GP; Ferrari R
    Brain Res Bull; 1992 Mar; 28(3):423-6. PubMed ID: 1591598
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Potential role of Pax-2 in retinal axon navigation through the chick optic nerve stalk and optic chiasm.
    Thanos S; Püttmann S; Naskar R; Rose K; Langkamp-Flock M; Paulus W
    J Neurobiol; 2004 Apr; 59(1):8-23. PubMed ID: 15007823
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Anterograde and transcellular transport of a fluorescent dye, bisbenzimide, in the rat visual system.
    Davis JN; McKinnon PN
    Neurosci Lett; 1982 Apr; 29(3):207-12. PubMed ID: 6179013
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Increased axonal transport in the rat optic system after systemic exposure to methylmercury: differential effects in local vs systemic exposure conditions.
    Aschner M; Rodier PM; Finkelstein JN
    Brain Res; 1987 Jan; 401(1):132-41. PubMed ID: 2434188
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [The affect of Erigeron Breviscapus (Vant.) Hand-Mazz on axoplasmic transport of optic nerve in rats with experimentally elevated intraocular pressure].
    Zhu Y; Jiang Y; Liu Z; Luo X; Wu Z
    Zhonghua Yan Ke Za Zhi; 2000 Jul; 36(4):289-91, 18. PubMed ID: 11853617
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Kainic acid derivatives as excitants of lateral geniculate relay neurons.
    King DJ; Wheal HV; Sharma RP; Kerkut GA
    Brain Res; 1983 Feb; 262(1):172-6. PubMed ID: 6831229
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Melatonin effects on brain. Interaction with microtubule protein, inhibition of fast axoplasmic flow and induction of crystaloid and tubular formations in the hypothalamus.
    Cardinali DP; Freire F
    Mol Cell Endocrinol; 1975 May; 2(5):317-30. PubMed ID: 47820
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Slow axonal protein transport and visual function following retinal and optic nerve ischemia.
    Levy NS; Adams CK
    Invest Ophthalmol; 1975 Feb; 14(2):91-7. PubMed ID: 46218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.