These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 6171330)

  • 41. Synthesis and axonal transport of membrane glycoproteins in an identified serotonergic neuron of Aplysia.
    Ambron RT; Goldman JE; Shkolnik LJ; Schwartz JH
    J Neurophysiol; 1980 Apr; 43(4):929-44. PubMed ID: 7359182
    [No Abstract]   [Full Text] [Related]  

  • 42. Fast axonal transport in auditory neurons of the guinea pig: a rapidly turned-over glycoprotein.
    Tytell M; Gulley RL; Wenthold RJ; Lasek RJ
    Proc Natl Acad Sci U S A; 1980 May; 77(5):3042-6. PubMed ID: 6156461
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Interganglionic axonal transport of neural peptides within the nervous system of Aplysia.
    Berry RW; Geinisman Y
    J Neurobiol; 1979 Sep; 10(5):489-98. PubMed ID: 90715
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fast axonal transport of membrane protein and intra-axonal diffusion of free leucine in a neuron of Aplysia.
    Koike H; Matsumoto H
    Neurosci Res; 1985 Apr; 2(4):281-5. PubMed ID: 2410835
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Metabolism of acetylcholine in the nervous system of Aplysia californica. IV. Studies of an identified cholinergic axon.
    Treistman SN; Schwartz JH
    J Gen Physiol; 1977 Jun; 69(6):725-41. PubMed ID: 894241
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The smooth endoplasmic reticulum: structure and role in the renewal of axonal membrane and synaptic vesicles by fast axonal transport.
    Droz B; Rambourg A; Koenig HL
    Brain Res; 1975 Jul; 93(1):1-13. PubMed ID: 49212
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Membrane glycolipids: regional synthesis and axonal transport in a single identified neuron of Aplysia californica.
    Sherbany AA; Ambron RT; Schwartz JH
    Science; 1979 Jan; 203(4375):78-80. PubMed ID: 83001
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ultrastructural characterization of axonal endings in the substantia gelatinosa which take up [3H]serotonin.
    Ruda MA; Gobel S
    Brain Res; 1980 Feb; 184(1):57-83. PubMed ID: 6153552
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The giant serotonergic neuron of Aplysia: a multi-targeted nerve cell.
    Schwartz JH; Shkolnik LJ
    J Neurosci; 1981 Jun; 1(6):606-19. PubMed ID: 6286898
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Distribution of proteins migrating with fast axonal transport. Their relationship to smooth endoplasmic reticulum.
    Papasozomenos SC; Autilio-Gambetti L; Gambetti P
    Brain Res; 1983 Nov; 278(1-2):232-5. PubMed ID: 6196088
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Axonal transport of [3H]fucosyl glycoproteins in noradrenergic neurons in the rat brain.
    Levin BE
    Brain Res; 1977 Jul; 130(3):421-32. PubMed ID: 70255
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Genesis and maturation of serotonergic vesicles in identified giant cerebral neuron of Aplysia.
    Shkolnik LJ; Schwartz JH
    J Neurophysiol; 1980 Apr; 43(4):945-67. PubMed ID: 7359183
    [No Abstract]   [Full Text] [Related]  

  • 53. Fast axonal transport of kinesin in the rat visual system: functionality of kinesin heavy chain isoforms.
    Elluru RG; Bloom GS; Brady ST
    Mol Biol Cell; 1995 Jan; 6(1):21-40. PubMed ID: 7538359
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mouse VAP33 is associated with the endoplasmic reticulum and microtubules.
    Skehel PA; Fabian-Fine R; Kandel ER
    Proc Natl Acad Sci U S A; 2000 Feb; 97(3):1101-6. PubMed ID: 10655491
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vivo neuron-wide analysis of synaptic vesicle precursor trafficking.
    Maeder CI; San-Miguel A; Wu EY; Lu H; Shen K
    Traffic; 2014 Mar; 15(3):273-91. PubMed ID: 24320232
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synthesis and fast axonal transport of proteins in the isolated Aplysia nervous system.
    Drake PF; Oblinger MM; Lasek RJ
    Brain Res; 1985 Apr; 332(1):47-57. PubMed ID: 2581650
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evidence that all newly synthesized proteins destined for fast axonal transport pass through the Golgi apparatus.
    Hammerschlag R; Stone GC; Bolen FA; Lindsey JD; Ellisman MH
    J Cell Biol; 1982 Jun; 93(3):568-75. PubMed ID: 6181072
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bidirectional axonal transport of free glycine in identified neurons R3--R14 of Aplysia.
    Price CH; McAdoo DJ; Farr W; Okuda R
    J Neurobiol; 1979 Nov; 10(6):551-71. PubMed ID: 93141
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Movement of endoplasmic reticulum in the living axon is distinct from other membranous vesicles in its rate, form, and sensitivity to microtubule inhibitors.
    Aihara Y; Inoue T; Tashiro T; Okamoto K; Komiya Y; Mikoshiba K
    J Neurosci Res; 2001 Aug; 65(3):236-46. PubMed ID: 11494358
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of histaminergic neurons in Aplysia.
    Elste A; Koester J; Shapiro E; Panula P; Schwartz JH
    J Neurophysiol; 1990 Sep; 64(3):736-44. PubMed ID: 2230920
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.