These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 6172251)

  • 1. Cortical potentials associated with voluntary foot movement in man.
    Shibasaki H; Barrett G; Halliday E; Halliday AM
    Electroencephalogr Clin Neurophysiol; 1981 Dec; 52(6):507-16. PubMed ID: 6172251
    [No Abstract]   [Full Text] [Related]  

  • 2. Separate cortical systems for control of joint movement and joint stiffness: reciprocal activation and coactivation of antagonist muscles.
    Humphrey DR; Reed DJ
    Adv Neurol; 1983; 39():347-72. PubMed ID: 6419553
    [No Abstract]   [Full Text] [Related]  

  • 3. Electrophysiological correlates preceding and following the movement onset in man.
    Jergelová M
    Act Nerv Super (Praha); 1983 Dec; 25(4):280-4. PubMed ID: 6666515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic location of cortical activity.
    Kaufman L; Williamson SJ
    Ann N Y Acad Sci; 1982; 388():197-213. PubMed ID: 6953868
    [No Abstract]   [Full Text] [Related]  

  • 5. Somatosensory evoked potentials in man: subcortical and cortical components and their neural basis.
    Desmedt JE; Cheron G
    Ann N Y Acad Sci; 1982; 388():388-411. PubMed ID: 6284000
    [No Abstract]   [Full Text] [Related]  

  • 6. Magnetic field of the human sensorimotor cortex.
    Okada YC; Williamson SJ; Kaufman L
    Int J Neurosci; 1982 Jul; 17(1):33-8. PubMed ID: 7166472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of response side on the readiness potential prior to finger and foot movements. A preliminary report.
    Brunia CH; van den Bosch WE
    Ann N Y Acad Sci; 1984; 425():434-7. PubMed ID: 6588862
    [No Abstract]   [Full Text] [Related]  

  • 8. Localization, timing and specificity of gating of somatosensory evoked potentials during active movement in man.
    Cohen LG; Starr A
    Brain; 1987 Apr; 110 ( Pt 2)():451-67. PubMed ID: 3567532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Centrifugal regulation of task-relevant somatosensory signals to trigger a voluntary movement.
    Kida T; Wasaka T; Nakata H; Kakigi R
    Exp Brain Res; 2006 Mar; 169(3):289-301. PubMed ID: 16307265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-cephalic reference recording of early somatosensory potentials to finger stimulation in adult or aging normal man: differentiation of widespread N18 and contralateral N20 from the prerolandic P22 and N30 components.
    Desmedt JE; Cheron G
    Electroencephalogr Clin Neurophysiol; 1981 Dec; 52(6):553-70. PubMed ID: 6172255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebral potentials and electromyographic responses evoked by stretch of wrist muscles in man.
    Abbruzzese G; Berardelli A; Rothwell JC; Day BL; Marsden CD
    Exp Brain Res; 1985; 58(3):544-51. PubMed ID: 4007093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cortical distribution of muscle and cutaneous afferent projections from the human foot.
    Macefield G; Burke D; Gandevia SC
    Electroencephalogr Clin Neurophysiol; 1989 Jun; 72(6):518-28. PubMed ID: 2471621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of warning and prior instruction on short-latency cerebral potentials produced by muscle afferents in man.
    Gandevia SC; McKeon B; Burke D
    J Neurol Neurosurg Psychiatry; 1983 May; 46(5):430-6. PubMed ID: 6101179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cortical potential related to sensory feedback from voluntary movements shows somatotopic organization of the supplementary motor area.
    Tarkka IM; Hallett M
    Brain Topogr; 1991; 3(3):359-63. PubMed ID: 1878283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanically evoked cerebral potentials and long-latency muscle responses in the evaluation of afferent and efferent long-loop pathways in humans.
    Ackermann H; Diener HC; Dichgans J
    Neurosci Lett; 1986 May; 66(3):233-8. PubMed ID: 3725188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Opposite hemisphere differences in movement related potentials preceding foot and finger flexions.
    Brunia CH; Vingerhoets AJ
    Biol Psychol; 1981 Dec; 13():261-9. PubMed ID: 7342995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mathematical model for localization of the source of cortical evoked potentials.
    Ryding E
    Electroencephalogr Clin Neurophysiol; 1980 Mar; 48(3):312-7. PubMed ID: 6153350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in central motor-sensory system following voluntary movement of stimulated finger.
    Nishihira Y; Araki H; Funase K; Imanaka K
    J Sports Med Phys Fitness; 1997 Mar; 37(1):65-71. PubMed ID: 9190128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. About the origin of cerebral somatosensory potentials evoked by Achilles tendon taps in humans.
    Cohen L; Starr A
    Electroencephalogr Clin Neurophysiol; 1985 Mar; 62(2):108-16. PubMed ID: 2578940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The cerebral control of the somatosensory and auditory afferent projections to the cerebral cortex in man and animals].
    Liubimov NN; Orlova TV; Liubimov SN
    Usp Fiziol Nauk; 1998; 29(3):3-20. PubMed ID: 9749454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.