These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 6173420)

  • 1. Protection of newborn mice from a lethal herpes simplex virus infection by human interferon, antibody, and leukocytes.
    Kohl S; Loo LS; Greenberg SB
    J Immunol; 1982 Mar; 128(3):1107-11. PubMed ID: 6173420
    [No Abstract]   [Full Text] [Related]  

  • 2. Protection of neonatal mice against herpes simplex virus infection: probable in vivo antibody-dependent cellular cytotoxicity.
    Kohl S; Loo LS
    J Immunol; 1982 Jul; 129(1):370-6. PubMed ID: 6282968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protection of neonatal mice against herpes simplex viral infection by human antibody and leukocytes from adult, but not neonatal humans.
    Kohl S; Loo LS; Pickering LK
    J Immunol; 1981 Oct; 127(4):1273-5. PubMed ID: 7276559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defective production of anti-herpes simplex virus antibody by neonatal mice. Reconstitution with Ia+ macrophages and T helper lymphocytes from nonimmune adult syngeneic mice.
    Kohl S; Thomas JW; Loo LS
    J Immunol; 1986 Apr; 136(8):3038-44. PubMed ID: 3007609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ontogeny of protection of neonatal mice from lethal herpes simplex virus infection by human leukocytes, antiviral antibody, and recombinant alpha-interferon.
    Kohl S; Bigelow RH; Loo LS
    Pediatr Res; 1984 Nov; 18(11):1164-7. PubMed ID: 6514442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lymphocyte interferon production and transformation after Herpes simplex infections in humans.
    Rasmussen LE; Jordan GW; Stevens DA; Merigan TC
    J Immunol; 1974 Feb; 112(2):728-36. PubMed ID: 4360547
    [No Abstract]   [Full Text] [Related]  

  • 7. Split T-cell tolerance in herpes simplex virus-infected mice and its implication for anti-viral immunity.
    Nash AA; Ashford NP
    Immunology; 1982 Apr; 45(4):761-7. PubMed ID: 6279490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of interferon by immune lymphocytes exposed to herpes simplex virus-antibody complexes.
    Fujibayashi T; Hooks JJ; Notkins AL
    J Immunol; 1975 Nov; 115(5):1191-3. PubMed ID: 170341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic immunization against herpes simplex virus. Protection is mediated by CD4+ T lymphocytes.
    Manickan E; Rouse RJ; Yu Z; Wire WS; Rouse BT
    J Immunol; 1995 Jul; 155(1):259-65. PubMed ID: 7602102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interleukin-12- and gamma interferon-dependent innate immunity are essential and sufficient for long-term survival of passively immunized mice infected with herpes simplex virus type 1.
    Vollstedt S; Franchini M; Alber G; Ackermann M; Suter M
    J Virol; 2001 Oct; 75(20):9596-600. PubMed ID: 11559791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macrophages and age-dependent resistance to Herpes simplex virus in mice.
    Hirsch MS; Zisman B; Allison AC
    J Immunol; 1970 May; 104(5):1160-5. PubMed ID: 4315461
    [No Abstract]   [Full Text] [Related]  

  • 12. A review of the identification and titration of antibodies to herpes simplex viruses type 1 and type 2 in human sera.
    Plummer G
    Cancer Res; 1973 Jun; 33(6):1469-76. PubMed ID: 4352384
    [No Abstract]   [Full Text] [Related]  

  • 13. Monoclonal antibodies to the distinct antigenic sites on glycoproteins C and B and their protective abilities in herpes simplex virus infection.
    Bystrická M; Petríková M; Zatovicová M; Soláriková L; Kostolanský F; Mucha V; Russ G
    Acta Virol; 1997 Feb; 41(1):5-12. PubMed ID: 9199708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postpartum maternal corticosterone decreases maternal and neonatal antibody levels and increases the susceptibility of newborn mice to herpes simplex virus-associated mortality.
    Yorty JL; Schultz SA; Bonneau RH
    J Neuroimmunol; 2004 May; 150(1-2):48-58. PubMed ID: 15081248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous cytotoxicity mediated by human monocyte-macrophages against human fibroblasts infected with herpes simplex virsu--augmentation by interferon.
    Stanwick TL; Campbell DE; Nahmias AJ
    Cell Immunol; 1980 Aug; 53(2):413-6. PubMed ID: 6157489
    [No Abstract]   [Full Text] [Related]  

  • 16. Autologous herpes simplex virus-infected cells are lysed by human natural killer cells.
    Yasukawa M; Zarling JM
    J Immunol; 1983 Oct; 131(4):2011-6. PubMed ID: 6311903
    [No Abstract]   [Full Text] [Related]  

  • 17. Heat-shock protein 70 acts as an effective adjuvant in neonatal mice and confers protection against challenge with herpes simplex virus.
    Pack CD; Kumaraguru U; Suvas S; Rouse BT
    Vaccine; 2005 May; 23(27):3526-34. PubMed ID: 15855011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of interleukin-2 and macrophages to treat herpes simplex virus infection in neonatal mice.
    Kohl S; Loo LS
    J Infect Dis; 1988 Jun; 157(6):1187-92. PubMed ID: 2836520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A detergent-soluble extract of virus-infected cells free from infectious virus protects mice from lethal herpes simplex virus infection.
    Ohashi Y; Sakaue Y; Kato S; Wada T; Sato K
    Biken J; 1980 Dec; 23(4):199-204. PubMed ID: 6266395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cells infected with herpes simplex virus induce human monocyte-macrophages to produce interferon.
    Stanwick TL; Campbell DE; Nahmias AJ
    Immunobiology; 1981; 158(3):207-12. PubMed ID: 6163697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.