These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 6174337)

  • 21. Mechanism of porcine pancreatic alpha-amylase. Inhibition of amylose and maltopentaose hydrolysis by alpha-, beta- and gamma-cyclodextrins.
    Koukiekolo R; Desseaux V; Moreau Y; Marchis-Mouren G; Santimone M
    Eur J Biochem; 2001 Feb; 268(3):841-8. PubMed ID: 11168426
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mapping of barley alpha-amylases and outer subsite mutants reveals dynamic high-affinity subsites and barriers in the long substrate binding cleft.
    Kandra L; Hachem MA; Gyémánt G; Kramhøft B; Svensson B
    FEBS Lett; 2006 Sep; 580(21):5049-53. PubMed ID: 16949579
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Substrate specificity and detailed characterization of a bifunctional amylase-pullulanase enzyme from Bacillus circulans F-2 having two different active sites on one polypeptide.
    Kim CH; Kim YS
    Eur J Biochem; 1995 Feb; 227(3):687-93. PubMed ID: 7532585
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced maltose production through mutagenesis of acceptor binding subsite +2 in Bacillus stearothermophilus maltogenic amylase.
    Sun Y; Duan X; Wang L; Wu J
    J Biotechnol; 2016 Jan; 217():53-61. PubMed ID: 26597712
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Studies on the active site of human alpha-amylases: examination of the third subsite S3' of the aglycone-binding site by control of substrate binding mode.
    Omichi K; Hase S; Ikenaka T
    J Biochem; 1992 Jan; 111(1):4-7. PubMed ID: 1607363
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural basis for the substrate specificity of a Bacillus 1,3-1,4-beta-glucanase.
    Gaiser OJ; Piotukh K; Ponnuswamy MN; Planas A; Borriss R; Heinemann U
    J Mol Biol; 2006 Apr; 357(4):1211-25. PubMed ID: 16483609
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [The inhibiting effect of dimethylaminomethylferrocene on amylase].
    Shevel'kova AN; Riabov AD; Sinitsyn AP
    Biokhimiia; 1993 Jun; 58(6):928-37. PubMed ID: 7689862
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Substrate specificity of enzymes from Bacillus mesentericus].
    Nesterova NG; Cherkesova GV; Kirillova NF
    Mikrobiologiia; 1989; 58(4):553-6. PubMed ID: 2482930
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Studies on the subsite structure of amylases. II. Difference-spectrophotometric studies on the interaction of maltotriose with liquefying alpha-amylase from Bacillus subtilis.
    Ohnishi M; Kegai H; Hiromi K
    J Biochem; 1975 Aug; 78(2):247-51. PubMed ID: 819426
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein-carbohydrate interactions defining substrate specificity in Bacillus 1,3-1,4-beta-D-glucan 4-glucanohydrolases as dissected by mutational analysis.
    Piotukh K; Serra V; Borriss R; Planas A
    Biochemistry; 1999 Dec; 38(49):16092-104. PubMed ID: 10587432
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetic Study of the Active Site Structure of β-Amylase from Bacillus cereus var. mycoides.
    Nitta Y; Shirakawa M; Takasaki Y
    Biosci Biotechnol Biochem; 1996 Jan; 60(5):823-7. PubMed ID: 27281142
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering substrate preference in subtilisin: structural and kinetic analysis of a specificity mutant.
    Ruan B; London V; Fisher KE; Gallagher DT; Bryan PN
    Biochemistry; 2008 Jun; 47(25):6628-36. PubMed ID: 18507395
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [beta-1,3-1,4-glucanase in spore-forming microorganisms. IV. Properties of some Bacillus-beta-glucan-hydrolases (author's transl)].
    Borriss R; Zemek J
    Zentralbl Bakteriol Naturwiss; 1981; 136(1):63-9. PubMed ID: 6784378
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A stochastic model for predicting dextrose equivalent and saccharide composition during hydrolysis of starch by alpha-amylase.
    Besselink T; Baks T; Janssen AE; Boom RM
    Biotechnol Bioeng; 2008 Jul; 100(4):684-97. PubMed ID: 18351657
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mutagenesis of Ala290, which modulates substrate subsite affinity at the catalytic interface of dimeric ThMA.
    Park SH; Cha H; Kang HK; Shim JH; Woo EJ; Kim JW; Park KH
    Biochim Biophys Acta; 2005 Aug; 1751(2):170-7. PubMed ID: 15975859
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Introducing transglycosylation activity in Bacillus licheniformis α-amylase by replacement of His235 with Glu.
    Tran PL; Cha HJ; Lee JS; Park SH; Woo EJ; Park KH
    Biochem Biophys Res Commun; 2014 Sep; 451(4):541-7. PubMed ID: 25117441
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of changes in the action pattern of polymer-degrading enzymes following chemical modification of a subsite.
    Hiromi K; Onishi M; Shibata S
    J Biochem; 1973 Aug; 74(2):397-400. PubMed ID: 4761328
    [No Abstract]   [Full Text] [Related]  

  • 38. Mechanism of Bacillus 1,3-1,4-beta-D-glucan 4-glucanohydrolases: kinetics and pH studies with 4-methylumbelliferyl beta-D-glucan oligosaccharides.
    Malet C; Planas A
    Biochemistry; 1997 Nov; 36(45):13838-48. PubMed ID: 9374861
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition of the two-subsite beta-d-xylosidase from Selenomonas ruminantium by sugars: competitive, noncompetitive, double binding, and slow binding modes.
    Jordan DB; Braker JD
    Arch Biochem Biophys; 2007 Sep; 465(1):231-46. PubMed ID: 17588525
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conserved residues of liquefying alpha-amylases are concentrated in the vicinity of active site.
    Vihinen M; Mäntsälä P
    Biochem Biophys Res Commun; 1990 Jan; 166(1):61-5. PubMed ID: 2302216
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.