These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 6174862)
1. Differential metabolism of allopurinol and derivatives in Trypanosoma rangeli and T. cruzi culture forms. Avila JL; Avila A; de Casanova MA Mol Biochem Parasitol; 1981 Dec; 4(5-6):265-72. PubMed ID: 6174862 [TBL] [Abstract][Full Text] [Related]
2. Differences in allopurinol and 4-aminopyrazolo(3,4-d) pyrimidine metabolism in drug-sensitive and insensitive strains of Trypanosoma cruzi. Avila JL; Avila A; Monzón H Mol Biochem Parasitol; 1984 Apr; 11():51-60. PubMed ID: 6379452 [TBL] [Abstract][Full Text] [Related]
3. Antitrypanosomal effect of allopurinol: conversion in vivo to aminopyrazolopyrimidine nucleotides by Trypanosoma curzi. Marr JJ; Berens RL; Nelson DJ Science; 1978 Sep; 201(4360):1018-20. PubMed ID: 356267 [TBL] [Abstract][Full Text] [Related]
4. Effect of allopurinol on Trypanosoma cruzi: metabolism and biological activity in intracellular and bloodstream forms. Berens RL; Marr JJ; Steele da Cruz FS; Nelson DJ Antimicrob Agents Chemother; 1982 Oct; 22(4):657-61. PubMed ID: 6817705 [TBL] [Abstract][Full Text] [Related]
5. Pyrazolopyrimidine metabolism in African trypanosomes: metabolic similarities to Trypanosoma cruzi and Leishmania spp. Berens RL; Marr JJ; Brun R Mol Biochem Parasitol; 1980 Apr; 1(2):69-73. PubMed ID: 7003380 [TBL] [Abstract][Full Text] [Related]
7. Subcellular localization of glycolytic enzymes and characterization of intermediary metabolism of Trypanosoma rangeli. Rondón-Mercado R; Acosta H; Cáceres AJ; Quiñones W; Concepción JL Mol Biochem Parasitol; 2017 Sep; 216():21-29. PubMed ID: 28645481 [TBL] [Abstract][Full Text] [Related]
8. Efficacy of pyrazolopyrimidine ribonucleosides against Trypanosoma cruzi: studies in vitro and in vivo with sensitive and resistant strains. Berens RL; Marr JJ; Looker DL; Nelson DJ; LaFon SW J Infect Dis; 1984 Oct; 150(4):602-8. PubMed ID: 6436394 [TBL] [Abstract][Full Text] [Related]
9. The affinity of the lectins Ricinus communis and Glycine maxima to carbohydrates on the cell surface of various forms of Trypanosoma cruzi and Trypanosoma rangeli, and the application of these lectins for the identification of T. cruzi in the feces of Rhodnius prolixus. Marinkelle CJ; Vallejo GA; Schottelius J; Guhl F; de Sanchez N Acta Trop; 1986 Sep; 43(3):215-23. PubMed ID: 2877548 [TBL] [Abstract][Full Text] [Related]
11. DNA content analysis allows discrimination between Trypanosoma cruzi and Trypanosoma rangeli. Naves LL; da Silva MV; Fajardo EF; da Silva RB; De Vito FB; Rodrigues V; Lages-Silva E; Ramírez LE; Pedrosa AL PLoS One; 2017; 12(12):e0189907. PubMed ID: 29261763 [TBL] [Abstract][Full Text] [Related]
12. Genomic comparison of Trypanosoma conorhini and Trypanosoma rangeli to Trypanosoma cruzi strains of high and low virulence. Bradwell KR; Koparde VN; Matveyev AV; Serrano MG; Alves JMP; Parikh H; Huang B; Lee V; Espinosa-Alvarez O; Ortiz PA; Costa-Martins AG; Teixeira MMG; Buck GA BMC Genomics; 2018 Oct; 19(1):770. PubMed ID: 30355302 [TBL] [Abstract][Full Text] [Related]
13. Trypanosoma cruzi: 4-aminopyrazolopyrimidine in the treatment of experimental Chagas' disease. Avila JL; Avila A; Muñoz E; Monzón H Exp Parasitol; 1983 Oct; 56(2):236-40. PubMed ID: 6413238 [TBL] [Abstract][Full Text] [Related]
14. Trypanosoma cruzi-Trypanosoma rangeli co-infection ameliorates negative effects of single trypanosome infections in experimentally infected Rhodnius prolixus. Peterson JK; Graham AL; Elliott RJ; Dobson AP; Triana Chávez O Parasitology; 2016 Aug; 143(9):1157-67. PubMed ID: 27174360 [TBL] [Abstract][Full Text] [Related]
15. Biochemical characterization of new strains of Trypanosoma cruzi and T. rangeli isolates from Peru and Mexico. Rodríguez-González I; Marín C; Hitos AB; Rosales MJ; Gutierrez-Sánchez R; Sánchez-Moreno M Parasitol Res; 2004 Oct; 94(4):294-300. PubMed ID: 15368126 [TBL] [Abstract][Full Text] [Related]
17. Detection of Trypanosoma cruzi and Trypanosoma rangeli infection in triatomine vectors by amplification of the histone H2A/SIRE and the sno-RNA-C11 genes. Pavia PX; Vallejo GA; Montilla M; Nicholls RS; Puerta CJ Rev Inst Med Trop Sao Paulo; 2007; 49(1):23-30. PubMed ID: 17384816 [TBL] [Abstract][Full Text] [Related]
18. Differential diagnosis of Trypanosoma cruzi and T. rangeli infection by PCR of cysteine proteinase genes. Tanaka T Kansenshogaku Zasshi; 1997 Sep; 71(9):903-9. PubMed ID: 9339627 [TBL] [Abstract][Full Text] [Related]
19. Differentiation between Trypanosoma cruzi and Trypanosoma rangeli using heat-shock protein 70 polymorphisms. Fraga J; Fernandez-Calienes A; Montalvo AM; Maes I; Dujardin JC; Van der Auwera G Trop Med Int Health; 2014 Feb; 19(2):195-206. PubMed ID: 24224809 [TBL] [Abstract][Full Text] [Related]
20. Human urine stimulates in vitro growth of Trypanosoma cruzi and Trypanosoma rangeli. Ferreira KA; Lemos-Júnior PE; Lages-Silva E; Ramírez LE; Pedrosa AL Parasitol Res; 2007 Oct; 101(5):1383-8. PubMed ID: 17629735 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]