These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 61755)

  • 1. Vitamin K-dependent gamma-carboxyglutamic acid formation by kidney microsomes in vitro.
    Hauschka PV; Friedman PA; Traverso HP; Gallop PM
    Biochem Biophys Res Commun; 1976 Aug; 71(4):1207-13. PubMed ID: 61755
    [No Abstract]   [Full Text] [Related]  

  • 2. The vitamin K-dependent synthesis of gamma-carboxyglutamic acid by bone microsomes.
    Lian JB; Friedman PA
    J Biol Chem; 1978 Oct; 253(19):6623-6. PubMed ID: 567642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vitamin K-dependent carboxylation of glutamic acid residues to gamma-carboxyglutamic acid in lung microsomes.
    Bell RG
    Arch Biochem Biophys; 1980 Aug; 203(1):58-64. PubMed ID: 7406513
    [No Abstract]   [Full Text] [Related]  

  • 4. Vitamin K dependent formation of gamma-carboxyglutamate residues in tumor microsomes.
    Buchthal SD; McAllister CG; Laux DC; Bell RG
    Biochem Biophys Res Commun; 1982 Nov; 109(1):55-62. PubMed ID: 6818961
    [No Abstract]   [Full Text] [Related]  

  • 5. Vitamin K dependence of a calcium-binding protein containing gamma-carboxyglutamic acid in chicken bone.
    Hauschka PV; Reid ML
    J Biol Chem; 1978 Dec; 253(24):9063-8. PubMed ID: 721829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vitamin K dependent carboxylation of glutamate residues to gamma-carboxyglutamate in microsomes from spleen and testes: comparison with liver, lung, and kidney.
    Buchthal SD; Bell RG
    Biochemistry; 1983 Mar; 22(5):1077-82. PubMed ID: 6132618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vitamin K and the biosynthesis of prothrombin. V. Gamma-carboxyglutamic acids, the vitamin K-dependent structures in prothrombin.
    Fernlund P; Stenflo J; Roepstorff P; Thomsen J
    J Biol Chem; 1975 Aug; 250(15):6125-33. PubMed ID: 50323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vitamin K-dependent carboxylase: liver activity in various species.
    Shah DV; Suttie JW
    Proc Soc Exp Biol Med; 1979 Sep; 161(4):498-501. PubMed ID: 482281
    [No Abstract]   [Full Text] [Related]  

  • 9. Vitamin K-dependent gamma-carboxyglutamic acid formation by mouse renal adenocarcinoma cells (RAG).
    Traverso HP; Hauschka PV; Gallop PM
    Calcif Tissue Int; 1980; 30(1):73-6. PubMed ID: 6767535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. gamma-Carboxyglutamic acid.
    Lian JB; Gundberg CM; Hauschka PV; Gallop PM
    Methods Enzymol; 1985; 113():133-46. PubMed ID: 3910998
    [No Abstract]   [Full Text] [Related]  

  • 11. Stimulation by vitamin K3 of NADPH oxidation in liver microsomes.
    Nishibayashi H; Omura T; Sato R
    J Biochem; 1966 Aug; 60(2):172-83. PubMed ID: 4381835
    [No Abstract]   [Full Text] [Related]  

  • 12. Osteocalcin: a vitamin K-dependent calcium-binding protein in bone.
    Nutr Rev; 1979 Feb; 37(2):54-7. PubMed ID: 431907
    [No Abstract]   [Full Text] [Related]  

  • 13. Fractionation and reconstitution of vitamin K-dependent carboxylation activity in rat liver microsomes.
    Price JA; Bartels VL; Chiu A; Delaney R; Johnson BC
    J Biol Chem; 1980 Mar; 255(5):1808-11. PubMed ID: 7354060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of reduced vitamin K esters on vitamin K-dependent carboxylation.
    Chander KS; Gaudry M; Marquet A; Rikong-Adie H; Decottignies-Lemarechal P; Azerad R
    Biochim Biophys Acta; 1981 Mar; 673(2):157-62. PubMed ID: 7213818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of the vitamin K-dependent carboxylating system in human placenta.
    Friedman PA; Hauschka PV; Shia MA; Wallace JK
    Biochim Biophys Acta; 1979 Mar; 583(2):261-5. PubMed ID: 444564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of vitamin K homologues on the conversion of preprothrombin to prothrombin in rat liver microsomes.
    Jones JP; Fausto A; Houser RM; Gardner EJ; Olson RE
    Biochem Biophys Res Commun; 1976 Sep; 72(2):589-97. PubMed ID: 985500
    [No Abstract]   [Full Text] [Related]  

  • 17. [Molecular mechanisms of vitamin K action in the bone homeostasis].
    Ichikawa T; Inoue S
    Clin Calcium; 2005 May; 15(5):839-44. PubMed ID: 15876748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of kidney microsomal cytochrome P-450 in cyclosporin induced nephropathy.
    Yoshimura R; Yoshimura N; Kusunose E; Matsui S; Hamashima T; Kishimoto T; Oka T; Kusunose M; Maekawa M
    Transplant Proc; 1989 Feb; 21(1 Pt 1):934-6. PubMed ID: 2784911
    [No Abstract]   [Full Text] [Related]  

  • 19. The in vivo effects of oral anticoagulants in man: comparison between liver and non-hepatic tissues.
    de Boer-van den Berg M; Thijssen HH; Vermeer C
    Thromb Haemost; 1988 Apr; 59(2):147-50. PubMed ID: 3260413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulation of microsomal drug oxidation in liver and kidney of rats treated with the oncolytic agent cis-dichlorodiammineplatinum-II.
    Litterst CL; Tong S; Hirokata Y; Siddik ZH
    Pharmacology; 1983; 26(1):46-53. PubMed ID: 6681909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.