These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 6175658)

  • 1. Electrophoretic study of Clostridium species.
    Cato EP; Hash DE; Holdeman LV; Moore WE
    J Clin Microbiol; 1982 Apr; 15(4):688-702. PubMed ID: 6175658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Taxonomy of the Clostridia: ribosomal ribonucleic acid homologies among the species.
    Johnson JL; Francis BS
    J Gen Microbiol; 1975 Jun; 88(2):229-44. PubMed ID: 168308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [A medium for the differentiation of some pathogenic clostridia].
    Omurtag AC
    Zentralbl Bakteriol Orig; 1968; 207(4):560-1. PubMed ID: 4317009
    [No Abstract]   [Full Text] [Related]  

  • 4. Culture isolation and identification of clostridia.
    Narayan KG
    Zentralbl Bakteriol Orig; 1967 Jan; 202(2):212-20. PubMed ID: 4300051
    [No Abstract]   [Full Text] [Related]  

  • 5. [Differentiation of the main species of Clostridium by gas chromatography].
    Bychenko BD; Kaplunova OP; Kurdina DS
    Zh Mikrobiol Epidemiol Immunobiol; 1985 Oct; (10):22-5. PubMed ID: 2868589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complementation of a Clostridium perfringens spo0A mutant with wild-type spo0A from other Clostridium species.
    Huang IH; Sarker MR
    Appl Environ Microbiol; 2006 Sep; 72(9):6388-93. PubMed ID: 16957268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The use of the agar diffusion reaction for the diagnosis of Cl. perfringens].
    Battistini F; Murruzzu I
    G Batteriol Virol Immunol Ann Osp Maria Vittor Torino; 1967; 60(5):290-4. PubMed ID: 4310733
    [No Abstract]   [Full Text] [Related]  

  • 8. Characterization of clostridia by gas chromatography. I. Differentiation of species by cellular fatty acids.
    Moss CW; Lewis VJ
    Appl Microbiol; 1967 Mar; 15(2):390-7. PubMed ID: 4291511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of clostridia by gas chromatography differentiation of species by trimethylsilyl derivatives of whole-cell hydrolysates.
    Farshy DC; Moss CW
    Appl Microbiol; 1970 Jul; 20(1):78-84. PubMed ID: 4318575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Method for the typing of Clostridium difficile based on polyacrylamide gel electrophoresis of [35S]methionine-labeled proteins.
    Tabaqchali S; O'Farrell S; Holland D; Silman R
    J Clin Microbiol; 1986 Jan; 23(1):197-8. PubMed ID: 3700603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BotR/A and TetR are alternative RNA polymerase sigma factors controlling the expression of the neurotoxin and associated protein genes in Clostridium botulinum type A and Clostridium tetani.
    Raffestin S; Dupuy B; Marvaud JC; Popoff MR
    Mol Microbiol; 2005 Jan; 55(1):235-49. PubMed ID: 15612931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Taxonomic relationships among Clostridium novyi Types A and B, Clostridium haemolyticum and Clostridium botulinum type C.
    Nakamura S; Kimura I; Yamakawa K; Nishida S
    J Gen Microbiol; 1983 May; 129(5):1473-9. PubMed ID: 6352856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of serogrouping and polyacrylamide gel electrophoresis for typing Clostridium difficile.
    Delmée M; Laroche Y; Avesani V; Cornelis G
    J Clin Microbiol; 1986 Dec; 24(6):991-4. PubMed ID: 3782463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic characteristics of toxigenic Clostridia and toxin gene evolution.
    Popoff MR; Bouvet P
    Toxicon; 2013 Dec; 75():63-89. PubMed ID: 23707611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modification of an acetone-sodium dodecyl sulfate disruption method for cellular protein extraction from neurotoxigenic Clostridium botulinum.
    Bhaduri S
    Foodborne Pathog Dis; 2012 Feb; 9(2):172-4. PubMed ID: 22044259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyacrylamide gel electrophoresis patterns produced by Clostridium difficile.
    Wexler H; Mulligan ME; Finegold SM
    Rev Infect Dis; 1984; 6 Suppl 1():S229-34. PubMed ID: 6718936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal stability of the deoxyribonucleic acid hybrids between the proteolytic strains of Clostridium botulinum and Clostridium sporogenes.
    Wu JI; Riemann H; Lee WH
    Can J Microbiol; 1972 Jan; 18(1):97-9. PubMed ID: 4551616
    [No Abstract]   [Full Text] [Related]  

  • 18. Bacterial agglutination and polyacrylamide gel electrophoresis for typing Clostridium difficile.
    Mulligan ME; Halebian S; Kwok RY; Cheng WC; Finegold SM; Anselmo CR; Gerding DN; Peterson LR
    J Infect Dis; 1986 Feb; 153(2):267-71. PubMed ID: 3080531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer-aided densitometric analysis of protein patterns of Clostridium difficile.
    Ehret W; Turba M; Pfaller P; Heizmann W; Ruckdeschel G
    Eur J Clin Microbiol Infect Dis; 1988 Apr; 7(2):285-90. PubMed ID: 3134233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Growing Clostridium on nutritional media with polyacrylamide gel].
    Bil'ko IP
    Mikrobiol Zh (1978); 1986; 48(4):88-91. PubMed ID: 2908416
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.