These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 6176991)

  • 1. Selenium-containing tRNAGlu from Clostridium sticklandii: correlation of aminoacylation with selenium content.
    Ching WM; Stadtman TC
    Proc Natl Acad Sci U S A; 1982 Jan; 79(2):374-7. PubMed ID: 6176991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of selenium-containing tRNAGlu from Clostridium sticklandii.
    Ching WM
    Arch Biochem Biophys; 1986 Jan; 244(1):137-46. PubMed ID: 2418784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A selenium-containing nucleoside at the first position of the anticodon in seleno-tRNAGlu from Clostridium sticklandii.
    Ching WM; Alzner-DeWeerd B; Stadtman TC
    Proc Natl Acad Sci U S A; 1985 Jan; 82(2):347-50. PubMed ID: 3918309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selenium-containing tRNAs from Clostridium sticklandii: cochromatography of one species with L-prolyl-tRNA.
    Chen CS; Stadtman TC
    Proc Natl Acad Sci U S A; 1980 Mar; 77(3):1403-7. PubMed ID: 6154932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New biologic functions--selenium-dependent nucleic acids and proteins.
    Stadtman TC
    Fundam Appl Toxicol; 1983; 3(5):420-3. PubMed ID: 6227514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selenium-containing tRNAs from Clostridium sticklandii. Cochromatography of seleno-tRNA I with L-VALYL-tRNA.
    Chen CS; Wen TN; Tuan HM
    Biochim Biophys Acta; 1982 Nov; 699(2):92-7. PubMed ID: 6924860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformation change of tRNAGlu in the complex with glutamyl-tRNA synthetase is required for the specific binding of L-glutamate.
    Hara-Yokoyama M; Yokoyama S; Miyazawa T
    Biochemistry; 1986 Nov; 25(22):7031-6. PubMed ID: 2879555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. tRNAGlu increases the affinity of glutamyl-tRNA synthetase for its inhibitor glutamyl-sulfamoyl-adenosine, an analogue of the aminoacylation reaction intermediate glutamyl-AMP: mechanistic and evolutionary implications.
    Blais SP; Kornblatt JA; Barbeau X; Bonnaure G; Lagüe P; Chênevert R; Lapointe J
    PLoS One; 2015; 10(4):e0121043. PubMed ID: 25860020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and synthesis of a naturally occurring selenonucleoside in bacterial tRNAs: 5-[(methylamino)methyl]-2-selenouridine.
    Wittwer AJ; Tsai L; Ching WM; Stadtman TC
    Biochemistry; 1984 Sep; 23(20):4650-5. PubMed ID: 6388630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of modified nucleotides on Escherichia coli tRNAGlu structure and on its aminoacylation by glutamyl-tRNA synthetase. Predominant and distinct roles of the mnm5 and s2 modifications of U34.
    Madore E; Florentz C; Giegé R; Sekine S; Yokoyama S; Lapointe J
    Eur J Biochem; 1999 Dec; 266(3):1128-35. PubMed ID: 10583410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aminoacylation of hypomodified tRNAGlu in vivo.
    Krüger MK; Sørensen MA
    J Mol Biol; 1998 Dec; 284(3):609-20. PubMed ID: 9826502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of 5-methylaminomethyl-2-selenouridine, a naturally occurring nucleoside in Escherichia coli tRNA.
    Wittwer AJ; Stadtman TC
    Arch Biochem Biophys; 1986 Aug; 248(2):540-50. PubMed ID: 2874771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The so-called tRNAGlu1 of Escherichia coli is a stable denatured conformer of the major isoacceptor tRNAGlu2.
    Tremblay TL; Lapointe J
    Biochem Cell Biol; 1986 Apr; 64(4):315-22. PubMed ID: 2872905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of the chlorophyll precursor delta-aminolevulinic acid in cyanobacteria requires aminoacylation of a tRNAGlu species.
    O'Neill GP; Peterson DM; Schön A; Chen MW; Söll D
    J Bacteriol; 1988 Sep; 170(9):3810-6. PubMed ID: 2900830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The glutamyl-tRNA synthetase of Escherichia coli: substrate-induced protection against its thermal inactivation.
    Kern D; Lapointe J
    Nucleic Acids Res; 1979 Sep; 7(2):501-15. PubMed ID: 386286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method for the isolation of specific tRNA precursors.
    Vögeli G; Grosjean H; Söll D
    Proc Natl Acad Sci U S A; 1975 Dec; 72(12):4790-4. PubMed ID: 1108001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recognition of tRNAs by aminoacyl-tRNA synthetases: Escherichia coli tRNAMet and E. coli methionyl-tRNA synthetase.
    Schulman LH; Pelka H
    Fed Proc; 1984 Dec; 43(15):2977-80. PubMed ID: 6389181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoarchaeum equitans creates functional tRNAs from separate genes for their 5'- and 3'-halves.
    Randau L; Münch R; Hohn MJ; Jahn D; Söll D
    Nature; 2005 Feb; 433(7025):537-41. PubMed ID: 15690044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arc1p: anchoring, routing, coordinating.
    Frechin M; Kern D; Martin RP; Becker HD; Senger B
    FEBS Lett; 2010 Jan; 584(2):427-33. PubMed ID: 19914242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosynthesis of selenium-modified tRNAs in Methanococcus vannielii.
    Politino M; Tsai L; Veres Z; Stadtman TC
    Proc Natl Acad Sci U S A; 1990 Aug; 87(16):6345-8. PubMed ID: 2143584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.