BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 6177346)

  • 21. Cooperativity in the calcium ion-induced quenching of the intrinsic fluorescence of a series of normal and GLA-deficient bovine prothrombin fragment 1 molecules.
    Malhotra OP; Valencic F; Fossel ET; Koehler KA
    J Protein Chem; 1991 Feb; 10(1):31-41. PubMed ID: 2054061
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vitamin K and the biosynthesis of prothrombin. V. Gamma-carboxyglutamic acids, the vitamin K-dependent structures in prothrombin.
    Fernlund P; Stenflo J; Roepstorff P; Thomsen J
    J Biol Chem; 1975 Aug; 250(15):6125-33. PubMed ID: 50323
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vitamin K and the biosynthesis of prothrombin. 3. Structural comparison of an NH2-terminal fragment from normal and from dicoumarol-induced bovine prothrombin.
    Stenflo J
    J Biol Chem; 1973 Sep; 248(18):6325-32. PubMed ID: 4125867
    [No Abstract]   [Full Text] [Related]  

  • 24. Localization of the metal-induced conformational transition of bovine prothrombin.
    Tai MM; Furie BC; Furie B
    J Biol Chem; 1984 Apr; 259(7):4162-8. PubMed ID: 6706997
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Decarboxylation of bovine prothrombin fragment 1 and prothrombin.
    Tuhy PM; Bloom JW; Mann KG
    Biochemistry; 1979 Dec; 18(26):5842-8. PubMed ID: 518871
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification and purification of vitamin K-dependent proteins and peptides with monoclonal antibodies specific for gamma -carboxyglutamyl (Gla) residues.
    Brown MA; Stenberg LM; Persson U; Stenflo J
    J Biol Chem; 2000 Jun; 275(26):19795-802. PubMed ID: 10779512
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metal and phospholipid binding properties of partially carboxylated human prothrombin variants.
    Borowski M; Furie BC; Goldsmith GH; Furie B
    J Biol Chem; 1985 Aug; 260(16):9258-64. PubMed ID: 4019472
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Purification and characterization of dicoumarol-induced prothrombins. Barium citrate atypical (7-GLA) prothrombin.
    Malhotra OP
    Thromb Res; 1979; 15(3-4):427-37. PubMed ID: 91201
    [No Abstract]   [Full Text] [Related]  

  • 29. Vitamin K dependent modifications of glutamic acid residues in prothrombin.
    Stenflo J; Fernlund P; Egan W; Roepstorff P
    Proc Natl Acad Sci U S A; 1974 Jul; 71(7):2730-3. PubMed ID: 4528109
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Purification and characterization of dicoumarol-induced prothrombins. III. Alumina pH 4.6 atypical (2-Gla) variant.
    Malhotra OP
    Thromb Res; 1979; 15(3-4):449-63. PubMed ID: 91203
    [No Abstract]   [Full Text] [Related]  

  • 31. Effects of urinary prothrombin fragment 1 in the formation of calcium oxalate calculus.
    Liu J; Chen J; Wang T; Wang S; Ye Z
    J Urol; 2005 Jan; 173(1):113-6. PubMed ID: 15592049
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Decarboxylation of gamma-carboxyglutamic acid residues in human prothrombin. Stoichiometry of calcium binding to gamma-carboxyglutamic acid in prothrombin.
    Bajaj SP; Price PA; Russell WA
    J Biol Chem; 1982 Apr; 257(7):3726-31. PubMed ID: 7061506
    [No Abstract]   [Full Text] [Related]  

  • 33. Atypical prothrombins induced by dicoumarol.
    Malhotra OP
    Nat New Biol; 1972 Sep; 239(89):59-60. PubMed ID: 4116530
    [No Abstract]   [Full Text] [Related]  

  • 34. Conformation-specific antibodies as probes of the gamma-carboxyglutamic acid-rich region of bovine prothrombin. Studies of metal-induced structural changes.
    Furie B; Furie BC
    J Biol Chem; 1979 Oct; 254(19):9766-71. PubMed ID: 90678
    [No Abstract]   [Full Text] [Related]  

  • 35. Two proteins with gamma-carboxyglutamic acid in frog bone: isolation and comparative characterization.
    Dohi Y; Iwami K; Yonemasu K; Moriyama T
    Biochim Biophys Acta; 1987 Oct; 915(3):378-84. PubMed ID: 2443180
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A mass-spectrometric method for the estimation of the ratio of gamma-carboxyglutamic acid to glutamic acid at specific sites in proteins. Application to the N-terminal region of bovine prothrombin.
    Rose K; Priddle JD; Offord RE; Esnouf MP
    Biochem J; 1980 Apr; 187(1):239-43. PubMed ID: 7406863
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vitamin K and the biosynthesis of prothrombin. II. Structural comparison of normal and dicoumarol-induced bovine prothrombin.
    Stenflo J
    J Biol Chem; 1972 Dec; 247(24):8167-75. PubMed ID: 4118353
    [No Abstract]   [Full Text] [Related]  

  • 38. Purification and characterization of calcium-binding protein containing gamma-carboxyglutamic acid from rat bone.
    Otawara Y; Hosoya N; Kasai H; Okuyama N; Moriuchi S
    J Nutr Sci Vitaminol (Tokyo); 1980; 26(3):209-19. PubMed ID: 6777474
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solution conformations of the gamma-carboxyglutamic acid domain of bovine prothrombin fragment 1, residues 1-65.
    Charifson PS; Darden T; Tulinsky A; Hughey JL; Hiskey RG; Pedersen LG
    Proc Natl Acad Sci U S A; 1991 Jan; 88(2):424-8. PubMed ID: 1988943
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for self-association of prothrombin fragment 1 in the absence of calcium ions. Implications for the interpretation of cooperativity of calcium binding.
    Jackson CM; Brenckle GM; Hogg PJ; Winzor DJ
    J Biol Chem; 1987 Oct; 262(28):13472-5. PubMed ID: 3654624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.