These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 6178432)

  • 1. Effects of flanking G . C base pairs on internal Watson-Crick, G . U, and nonbonded base pairs within a short ribonucleic acid duplex.
    Alkema D; Hader PA; Bell RA; Neilson T
    Biochemistry; 1982 Apr; 21(9):2109-17. PubMed ID: 6178432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of internal nonbonded bases and a G.U base pair on the stability of a short ribonucleic acid helix.
    Romaniuk PJ; Hughes DW; Grégoire RJ; Bell RA; Neilson T
    Biochemistry; 1979 Nov; 18(23):5109-16. PubMed ID: 497172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of base sequence and dangling bases on the stability of short ribonucleic acid duplexes.
    Neilson T; Romaniuk PJ; Alkema D; Hughes DW; Everett JR; Bell RA
    Nucleic Acids Symp Ser; 1980; (7):293-311. PubMed ID: 7255174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nearest neighbor parameters for inosine x uridine pairs in RNA duplexes.
    Wright DJ; Rice JL; Yanker DM; Znosko BM
    Biochemistry; 2007 Apr; 46(15):4625-34. PubMed ID: 17378583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamics of DNA duplexes with adjacent G.A mismatches.
    Li Y; Zon G; Wilson WD
    Biochemistry; 1991 Jul; 30(30):7566-72. PubMed ID: 1854755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of an RNA duplex r(GGCGBrUGCGCU)2 with terminal and internal tandem G.U base pairs.
    Utsunomiya R; Suto K; Balasundaresan D; Fukamizu A; Kumar PK; Mizuno H
    Acta Crystallogr D Biol Crystallogr; 2006 Mar; 62(Pt 3):331-8. PubMed ID: 16510980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilities of consecutive A.C, C.C, G.G, U.C, and U.U mismatches in RNA internal loops: Evidence for stable hydrogen-bonded U.U and C.C.+ pairs.
    SantaLucia J; Kierzek R; Turner DH
    Biochemistry; 1991 Aug; 30(33):8242-51. PubMed ID: 1714301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational features of the four successive non-Watson-Crick base pairs in RNA duplex.
    Fujii S; Tanaka Y; Uesugi S; Tanaka T; Sakata T; Hiroaki H
    Nucleic Acids Symp Ser; 1992; (27):63-4. PubMed ID: 1283916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The crystal structure of the octamer [r(guauaca)dC]2 with six Watson-Crick base-pairs and two 3' overhang residues.
    Shi K; Biswas R; Mitra SN; Sundaralingam M
    J Mol Biol; 2000 May; 299(1):113-22. PubMed ID: 10860726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative CD and thermodynamic studies between sheared A:G and Watson-Crick A:U(T) base pairs in RNA and DNA.
    Katahira M; Saeki J; Kanagawa M; Nagaoka M; Uesugi S
    Nucleic Acids Symp Ser; 1995; (34):59-60. PubMed ID: 8841551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of an alternating octamer r(GUAUGUA)dC with adjacent G x U wobble pairs.
    Biswas R; Wahl MC; Ban C; Sundaralingam M
    J Mol Biol; 1997 Apr; 267(5):1149-56. PubMed ID: 9150403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of an RNA internal loop consisting of tandem C-A+ base pairs.
    Jang SB; Hung LW; Chi YI; Holbrook EL; Carter RJ; Holbrook SR
    Biochemistry; 1998 Aug; 37(34):11726-31. PubMed ID: 9718295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear magnetic resonance spectroscopy and molecular modeling reveal that different hydrogen bonding patterns are possible for G.U pairs: one hydrogen bond for each G.U pair in r(GGCGUGCC)(2) and two for each G.U pair in r(GAGUGCUC)(2).
    Chen X; McDowell JA; Kierzek R; Krugh TR; Turner DH
    Biochemistry; 2000 Aug; 39(30):8970-82. PubMed ID: 10913310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free energy contributions of G.U and other terminal mismatches to helix stability.
    Freier SM; Kierzek R; Caruthers MH; Neilson T; Turner DH
    Biochemistry; 1986 Jun; 25(11):3209-13. PubMed ID: 3730356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contributions of dangling end stacking and terminal base-pair formation to the stabilities of XGGCCp, XCCGGp, XGGCCYp, and XCCGGYp helixes.
    Freier SM; Alkema D; Sinclair A; Neilson T; Turner DH
    Biochemistry; 1985 Aug; 24(17):4533-9. PubMed ID: 4063336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deoxyguanosine-deoxyadenosine pairing in the d(C-G-A-G-A-A-T-T-C-G-C-G) duplex: conformation and dynamics at and adjacent to the dG X dA mismatch site.
    Patel DJ; Kozlowski SA; Ikuta S; Itakura K
    Biochemistry; 1984 Jul; 23(14):3207-17. PubMed ID: 6466638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational transitions in thymidine bulge-containing deoxytridecanucleotide duplexes. Role of flanking sequence and temperature in modulating the equilibrium between looped out and stacked thymidine bulge states.
    Kalnik MW; Norman DG; Li BF; Swann PF; Patel DJ
    J Biol Chem; 1990 Jan; 265(2):636-47. PubMed ID: 2295611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of a 16-mer RNA duplex r(GCAGACUUAAAUCUGC)2 with wobble C.A+ mismatches.
    Pan B; Mitra SN; Sundaralingam M
    J Mol Biol; 1998 Nov; 283(5):977-84. PubMed ID: 9799637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structure of an RNA dodecamer shows how tandem U-U base pairs increase the range of stable RNA structures and the diversity of recognition sites.
    Lietzke SE; Barnes CL; Berglund JA; Kundrot CE
    Structure; 1996 Aug; 4(8):917-30. PubMed ID: 8805576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The 2,6-diaminopurine riboside.5-methylisocytidine wobble base pair: an isoenergetic substitution for the study of G.U pairs in RNA.
    Strobel SA; Cech TR; Usman N; Beigelman L
    Biochemistry; 1994 Nov; 33(46):13824-35. PubMed ID: 7524665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.