These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 6178803)

  • 1. Calcium requirement for fast axonal transport in frog motoneurons.
    Larivière L; Lavoie PA
    J Neurochem; 1982 Sep; 39(3):882-6. PubMed ID: 6178803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation of [3H]fucose-labelled glycoproteins in the Golgi apparatus of dorsal root ganglion neurons during inhibition of fast axonal transport caused by exposure of the ganglion to Co2+-containing or Ca2+-free medium.
    Lavoie PA; Bennett G
    Neuroscience; 1983; 8(2):351-62. PubMed ID: 6188994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Axoplasmic transport of proteins in vitro in primary afferent neurons of frog spinal cord: effect of Ca2+-free incubation conditions.
    Dravid AR; Hammerschlag R
    J Neurochem; 1975 Apr; 24(4):711-8. PubMed ID: 47385
    [No Abstract]   [Full Text] [Related]  

  • 4. Ionic requirements for in vitro retrograde axonal transport of acetylcholinesterase.
    Lavoie PA
    Neurosci Lett; 1982 Dec; 33(3):213-6. PubMed ID: 6186947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the mechanism of the inhibition of fast axonal transport caused by exposure of frog spinal ganglia to the sodium-deficient medium.
    Lavoie PA
    Neurosci Lett; 1981 Dec; 27(2):131-4. PubMed ID: 6172752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ca2+- or Mg2+-stimulated ATPase activity in bullfrog spinal nerve: relation to Ca2+ requirements for fast axonal transport.
    Hammerschlag R; Bobinski JA
    J Neurochem; 1981 Mar; 36(3):1114-21. PubMed ID: 6162913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetylcholinesterase distribution in axotomized frog motoneurons.
    Sinicropi DV; Michels K; McIlwain DL
    J Neurochem; 1982 Apr; 38(4):1099-105. PubMed ID: 6977618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of calcium ion in the L-glutamate-induced depolarization in the frog spinal cord.
    Kudo Y; Oka J
    Comp Biochem Physiol C Comp Pharmacol; 1982; 72(2):231-6. PubMed ID: 6128143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of the retrograde axonal transport of acetylcholinesterase by the anti-calmodulin agents amitriptyline and desipramine.
    Tiberi M; Lavoie PA
    J Neurobiol; 1985 May; 16(3):245-8. PubMed ID: 2409226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regeneration of motoneuron axons into the adult frog spinal cord after ventral-to-dorsal-root anastomosis.
    Liuzzi FJ; Lasek RJ
    J Comp Neurol; 1986 May; 247(1):111-22. PubMed ID: 3486892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptic activity in motoneurons of the immature cat spinal cord in vitro. Effects of manganese and tetrodotoxin.
    Shapovalov AI; Shiriaev BI; Tamarova ZA
    Brain Res; 1979 Jan; 160(3):524-8. PubMed ID: 217482
    [No Abstract]   [Full Text] [Related]  

  • 12. The role of calcium in the initiation of fast axonal transport.
    Hammerschlag R
    Fed Proc; 1980 Aug; 39(10):2809-14. PubMed ID: 6157571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An increase in smooth endoplasmic reticulum and a decrease in Golgi apparatus occur with ionic conditions that block initiation of fast axonal transport.
    Lindsey JD; Hammerschlag R; Ellisman MH
    Brain Res; 1981 Feb; 205(2):275-87. PubMed ID: 6162513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Depression of ventral root--dorsal root potential by DL-alpha-aminoadipate in frog spinal cord.
    Homma S
    Brain Res; 1981 Mar; 208(1):240-3. PubMed ID: 6970608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular injection of Ca2+ chelator does not affect spike repolarization of cat spinal motoneurons.
    Zhang L; Krnjević K
    Brain Res; 1988 Oct; 462(1):174-80. PubMed ID: 3141006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recurrent dorsal root potentials and motoneuron morphology in the frog spinal cord.
    Shupliakov OV; Antal M; Székely G
    Neurosci Lett; 1990 Sep; 117(3):289-94. PubMed ID: 2094819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dorsal root afferents contact migrating motoneurons in the developing frog spinal cord.
    Liuzzi FJ; Beattie MS; Bresnahan JC
    Brain Res; 1983 Mar; 262(2):299-302. PubMed ID: 6601507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms involved in the metabotropic glutamate receptor-enhancement of NMDA-mediated motoneurone responses in frog spinal cord.
    Holohean AM; Hackman JC; Davidoff RA
    Br J Pharmacol; 1999 Jan; 126(1):333-41. PubMed ID: 10051153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of some divalent cations on synaptic transmission in frog spinal neurones.
    Alvarez-Leefmans FJ; De Santis A; Miledi R
    J Physiol; 1979 Sep; 294():387-406. PubMed ID: 229215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progressive deficits in retrograde axon transport precede degeneration of motor axons in acrylamide neuropathy.
    Moretto A; Sabri MI
    Brain Res; 1988 Feb; 440(1):18-24. PubMed ID: 2451978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.