These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
532 related articles for article (PubMed ID: 6178954)
1. Transport of H+, K+, Na+ and Ca++ in Streptococcus. Heefner DL Mol Cell Biochem; 1982 Apr; 44(2):81-106. PubMed ID: 6178954 [No Abstract] [Full Text] [Related]
2. Primary and secondary transport of cations in bacteria. Harold FM; Kakinuma Y Ann N Y Acad Sci; 1985; 456():375-83. PubMed ID: 2418733 [No Abstract] [Full Text] [Related]
3. Ion extrusion systems in bacteria. Rosen BP; Ambudkar SV; Borbolla MG; Chen CM; Houng HS; Mobley HL; Tsujibo H; Zlotnick GW Ann N Y Acad Sci; 1985; 456():235-44. PubMed ID: 2418727 [No Abstract] [Full Text] [Related]
4. ATP-driven exchange of Na+ and K+ ions by Streptococcus faecalis. Kakinuma Y; Harold FM J Biol Chem; 1985 Feb; 260(4):2086-91. PubMed ID: 2857711 [TBL] [Abstract][Full Text] [Related]
5. Chemiosmotic interpretation of active transport in bacteria. Harold FM Ann N Y Acad Sci; 1974 Feb; 227():297-311. PubMed ID: 4275121 [No Abstract] [Full Text] [Related]
6. Active transport of Ca2+ in bacteria: bioenergetics and function. Devés R; Brodie AF Mol Cell Biochem; 1981 Apr; 36(2):65-84. PubMed ID: 6113540 [TBL] [Abstract][Full Text] [Related]
7. Effect of ionizing radiation on transmembrane potential of Streptococcus. Fomenko BS; Akoev IG Radiat Res; 1979 Mar; 77(3):479-89. PubMed ID: 35814 [No Abstract] [Full Text] [Related]
8. A vacuolar-type proton pump in a vesicle fraction enriched with potassium transporting plasma membranes from tobacco hornworm midgut. Wieczorek H; Weerth S; Schindlbeck M; Klein U J Biol Chem; 1989 Jul; 264(19):11143-8. PubMed ID: 2472389 [TBL] [Abstract][Full Text] [Related]
10. ATP-linked sodium transport in Streptococcus faecalis. I. The sodium circulation. Heefner DL; Harold FM J Biol Chem; 1980 Dec; 255(23):11396-402. PubMed ID: 6777378 [TBL] [Abstract][Full Text] [Related]
11. Mechanism of ATP free-energy transfer and utilization in (Na,K)-ATPase transport function. Dittrich F; Schön R; Repke KR Acta Biol Med Ger; 1974; 33(1):K17-25. PubMed ID: 4278447 [No Abstract] [Full Text] [Related]
12. [Osmotic activity and ionic permeability of membrane vesicles from Streptococcus faecalis and Micrococcus lysodeikticus cells]. Skopinskaia SN; Gorneva GA; Riabova ID Biokhimiia; 1977 Dec; 42(12):2228-34. PubMed ID: 145881 [TBL] [Abstract][Full Text] [Related]
13. Solubilization and reconstitution of membrane energy-transducing systems of Escherichia coli. Tsuchiya T; Misawa A; Miyake Y; Yamasaki K; Niiya S FEBS Lett; 1982 Jun; 142(2):231-4. PubMed ID: 6179795 [No Abstract] [Full Text] [Related]
14. A transmembrane pH gradient in Streptococcus faecalis: origin, and dissipation by proton conductors and N,N'-dicyclohexylcarbodimide. Harold FM; Pavlasová E; Baarda JR Biochim Biophys Acta; 1970; 196(2):235-44. PubMed ID: 4244306 [No Abstract] [Full Text] [Related]
15. [Energetic role of the plasma and mitochondrial membranes of neurons in antenatal pathology with increased convulsive susceptibility (review)]. Pogodaev KI Zh Nevropatol Psikhiatr Im S S Korsakova; 1985; 85(3):450-5. PubMed ID: 2581406 [No Abstract] [Full Text] [Related]
16. Thermodynamic evaluation of flip-flop mechanism for transport- and ATP-synthesis function of (Na,K)-ATPase. Schön R; Dittrich F; Repke KR Acta Biol Med Ger; 1974; 33(1):K9-16. PubMed ID: 4278821 [No Abstract] [Full Text] [Related]
17. Na+-coupled transport of melibiose in Escherichia coli: analysis of mutants with altered cation specificity. Tsuchiya T; Niiya S Tokai J Exp Clin Med; 1982; 7 Suppl():61-4. PubMed ID: 6225227 [TBL] [Abstract][Full Text] [Related]
18. ATP-driven calcium transport in membrane vesicles of Streptococcus sanguis. Houng HS; Lynn AR; Rosen BP J Bacteriol; 1986 Nov; 168(2):1040-4. PubMed ID: 3096955 [TBL] [Abstract][Full Text] [Related]