These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 6179615)

  • 1. Some considerations in the experimental approach to distinguishing between membrane transport and intracellular disposition of antineoplastic agents, with specific reference to fluorodeoxyuridine, actinomycin D, and methotrexate.
    Goldman D; Bowen D; Gewirtz DA
    Cancer Treat Rep; 1981; 65 Suppl 3():43-56. PubMed ID: 6179615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of the formation and membrane transport of 7-hydroxymethotrexate in freshly isolated rabbit hepatocytes.
    Fabre G; Fabre I; Gewirtz DA; Goldman ID
    Cancer Res; 1985 Mar; 45(3):1086-91. PubMed ID: 2578871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Membrane transport of antineoplastic drugs and its relevance to tumour chemotherapy (author's transl)].
    Kolassa N
    Wien Klin Wochenschr; 1980; 92(20):707-15. PubMed ID: 7467345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the role of membrane transport and polyglutamation of methotrexate in gut and the Ehrlich tumor in vivo as factors in drug sensitivity and selectivity.
    Fry DW; Anderson LA; Borst M; Goldman ID
    Cancer Res; 1983 Mar; 43(3):1087-92. PubMed ID: 6186369
    [No Abstract]   [Full Text] [Related]  

  • 5. [Amethopterin metabolism in mammalian cells].
    Balińska M
    Postepy Biochem; 1988; 34(4):417-27. PubMed ID: 2479942
    [No Abstract]   [Full Text] [Related]  

  • 6. Effects of folinic acid on hepatoma cells containing methotrexate polyglutamates.
    Galivan J; Nimec Z
    Cancer Res; 1983 Feb; 43(2):551-5. PubMed ID: 6184149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane transport considerations in high-dose methotrexate regimens with leucovorin rescue.
    Goldman ID
    Cancer Treat Rep; 1981; 65 Suppl 1():13-7. PubMed ID: 6173119
    [No Abstract]   [Full Text] [Related]  

  • 8. Teniposide (VM-26)- and etoposide (VP-16-213)-induced augmentation of methotrexate transport and polyglutamylation in Ehrlich ascites tumor cells in vitro.
    Yalowich JC; Fry DW; Goldman ID
    Cancer Res; 1982 Sep; 42(9):3648-53. PubMed ID: 6179605
    [No Abstract]   [Full Text] [Related]  

  • 9. Efflux of methotrexate and its polyglutamate derivatives from hepatic cells in vitro.
    Balińska M; Galivan J; Coward JK
    Cancer Res; 1981 Jul; 41(7):2751-6. PubMed ID: 6166369
    [No Abstract]   [Full Text] [Related]  

  • 10. Evidence for the cytotoxic activity of polyglutamate derivatives of methotrexate.
    Galivan J
    Mol Pharmacol; 1980 Jan; 17(1):105-10. PubMed ID: 6155601
    [No Abstract]   [Full Text] [Related]  

  • 11. 5-amino-4-imidazolecarboxamide riboside potentiates both transport of reduced folates and antifolates by the human reduced folate carrier and their subsequent metabolism.
    McGuire JJ; Haile WH; Yeh CC
    Cancer Res; 2006 Apr; 66(7):3836-44. PubMed ID: 16585211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacokinetic and pharmacodynamic considerations for chronic hemodialysis.
    Dedrick RL
    Kidney Int Suppl; 1975 Jan; (2):7-15. PubMed ID: 1099306
    [No Abstract]   [Full Text] [Related]  

  • 13. Intracellular pharmacokinetics of methotrexate polyglutamates in human breast cancer cells. Selective retention and less dissociable binding of 4-NH2-10-CH3-pteroylglutamate4 and 4-NH2-10-CH3-pteroylglutamate5 to dihydrofolate reductase.
    Jolivet J; Chabner BA
    J Clin Invest; 1983 Sep; 72(3):773-8. PubMed ID: 6193143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model for the kinetics of distribution of actinomycin-D in the beagle dog.
    Lutz RJ; Galbraith WM; Dedrick RL; Shrager R; Mellett LB
    J Pharmacol Exp Ther; 1977 Mar; 200(3):469-78. PubMed ID: 557542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacokinetic considerations on resistance to anticancer drugs.
    Dedrick RL; Zaharko DS; Bender RA; Bleyer WA; Lutz RJ
    Cancer Chemother Rep; 1975; 59(4):795-804. PubMed ID: 1236771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of methotrexate and folate transport by multidrug resistance protein 4 (ABCC4): MRP4 is a component of the methotrexate efflux system.
    Chen ZS; Lee K; Walther S; Raftogianis RB; Kuwano M; Zeng H; Kruh GD
    Cancer Res; 2002 Jun; 62(11):3144-50. PubMed ID: 12036927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The kinetics of methotrexate polyglutamate formation and efflux in a human breast cancer cell line (MDA.MB.436): the effect of insulin.
    Kennedy DG; Clarke R; van den Berg HW; Murphy RF
    Biochem Pharmacol; 1983 Jan; 32(1):41-6. PubMed ID: 6187348
    [No Abstract]   [Full Text] [Related]  

  • 18. [Pharmacokinetics of antineoplastic agents (author's transl)].
    Carcassonne Y; Cano JP; Meyer G
    Bull Cancer; 1979; 66(1):39-42. PubMed ID: 311229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methotrexate intracellular disposition in acute lymphoblastic leukemia: a mathematical model of gamma-glutamyl hydrolase activity.
    Panetta JC; Wall A; Pui CH; Relling MV; Evans WE
    Clin Cancer Res; 2002 Jul; 8(7):2423-9. PubMed ID: 12114448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dihydrofolate reductase binding and cellular uptake of nonpolyglutamatable antifolates: correlates of cytotoxicity toward methotrexate-sensitive and -resistant human head and neck squamous carcinoma cells.
    Chen G; Wright JE; Rosowsky A
    Mol Pharmacol; 1995 Oct; 48(4):758-65. PubMed ID: 7476904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.