BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 6179665)

  • 1. Antigen and receptor-driven regulatory mechanisms. IX. T cell--T cell interaction in the generation of first-order idiotype-bearing suppressor T cells.
    Bromberg JS; Flynn T; Sy MS; Benacerraf B; Greene MI
    Clin Immunol Immunopathol; 1982 Feb; 22(2):180-93. PubMed ID: 6179665
    [No Abstract]   [Full Text] [Related]  

  • 2. Hapten-specific responses to the phenyltrimethylamino hapten. II. Regulation of delayed-type hypersensitivity by genetically restricted, anti-idiotype suppressor T cells induced by the monovalent antigen L-tyrosine-p-azophenyltrimethylammonium.
    Jayaraman S; Bellone CJ
    Eur J Immunol; 1982 Apr; 12(4):278-84. PubMed ID: 6178600
    [No Abstract]   [Full Text] [Related]  

  • 3. Antigen- and receptor-driven regulatory mechanisms. V. The failure of idiotype-coupled spleen cells to induce unresponsiveness in animals lacking the appropriate VH genes is caused by the lack of idiotype-matched targets.
    Sy MS; Dietz MH; Nisonoff A; Germain RN; Benacerraf B; Greene MI
    J Exp Med; 1980 Nov; 152(5):1226-35. PubMed ID: 6159446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of the major crossreactive idiotype associated with anti-p-azophenylarsonate antibodies of A/J mice.
    Nelles MJ; Dohi Y; Nisonoff A
    Ann N Y Acad Sci; 1982; 392():330-44. PubMed ID: 6215884
    [No Abstract]   [Full Text] [Related]  

  • 5. Regulation of immunity to the azobenzenearsonate hapten.
    Greene MI; Nelles MJ; Sy MS; Nisonoff A
    Adv Immunol; 1982; 32():253-300. PubMed ID: 6214163
    [No Abstract]   [Full Text] [Related]  

  • 6. Antigen- and receptor-driven regulatory mechanisms. VIII. Suppression of idiotype-negative, p-azobenzenearsonate-specific T cells results from the interaction of an anti-idiotypic second-order T suppressor cell with a cross-reactive-idiotype-positive, p-azobenzenearsonate-primed T cell target.
    Sy MS; Nisonoff A; Germain RN; Benacerraf B; Greene MI
    J Exp Med; 1981 Jun; 153(6):1415-25. PubMed ID: 6454748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An antigen-specific signal is required for the activation of second-order suppressor T cells in the regulation of delayed-type hypersensitivity to 2,4,6-trinitrobenzene sulfonic acid.
    Tsurufuji M; Benacerraf B; Sy MS
    J Exp Med; 1983 Sep; 158(3):932-45. PubMed ID: 6193239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antigen- and receptor-driven regulatory mechanisms. III. Induction of delayed type hypersensitivity to azobenzenearsonate with anti-cross-reactive idiotypic antibodies.
    Sy MS; Brown AR; Benacerraf B; Greene MI
    J Exp Med; 1980 Apr; 151(4):896-909. PubMed ID: 6445395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of the immune response T-cell interactions.
    Dutton RW; Swain SL
    CRC Crit Rev Immunol; 1982 Feb; 3(3):209-61. PubMed ID: 6176399
    [No Abstract]   [Full Text] [Related]  

  • 10. Ligand-receptor relationships in immune regulation.
    Greene MI; Sy MS
    Fed Proc; 1981 Apr; 40(5):1458-61. PubMed ID: 6452289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of vesicular stomatitis virus (VSV) infection on the development and regulation of T cell-mediated immune responses.
    Sy MS; Tsurufuji M; Finberg R; Benacerraf B
    J Immunol; 1983 Jul; 131(1):30-6. PubMed ID: 6190912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of delayed-type hypersensitivity to azobenzenearsonate by a monoclonal anti-idiotype antibody.
    Thomas WR; Morahan G; Walker ID; Miller JF
    J Exp Med; 1981 Mar; 153(3):743-7. PubMed ID: 6788881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biologic activity of an idiotype-bearing suppressor T cell factor produced by a long-term T cell hybridoma.
    Takaoki M; Sy MS; Whitaker B; Nepom J; Finberg R; Germain RN; Nisonoff A; Benacerraf B; Greene MI
    J Immunol; 1982 Jan; 128(1):49-53. PubMed ID: 6459378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppressor T cells induced by idiotype-coupled cells function across an allotype barrier.
    Hirai Y; Dohi Y; Sy MS; Greene MI; Nisonoff A
    J Immunol; 1981 May; 126(5):2064-6. PubMed ID: 6452483
    [No Abstract]   [Full Text] [Related]  

  • 15. Characterization of anti-idiotypic suppressor T cells (Tsid) induced after antigen priming.
    Sherr DH; Dorf ME
    J Immunol; 1984 Sep; 133(3):1142-50. PubMed ID: 6205068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppressor T cell circuits.
    Benacerraf B; Greene MI; Sy MS; Dorf ME
    Ann N Y Acad Sci; 1982; 392():300-8. PubMed ID: 6215882
    [No Abstract]   [Full Text] [Related]  

  • 17. Hapten-specific responses to the phenyltrimethylamino hapten. V. A single chain antigen-binding I-J+ first-order T suppressor factor requires antigen to induce anti-idiotypic second-order suppressor T cells.
    Jayaraman S; Bellone CJ
    J Immunol; 1985 Feb; 134(2):1010-8. PubMed ID: 3155532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of the IgE antibody response by idiotype-anti-idiotype network.
    Blaser K; de Weck AL
    Prog Allergy; 1982; 32():203-64. PubMed ID: 6214794
    [No Abstract]   [Full Text] [Related]  

  • 19. The genetic and cellular basis of antigen and receptor stimulated regulation.
    Greene MI; Sy MS; Nisonoff A; Benacerraf B
    Mol Immunol; 1980 Jul; 17(7):857-66. PubMed ID: 6783830
    [No Abstract]   [Full Text] [Related]  

  • 20. Genetic and biological characterization of a T suppressor cell induced by anti-idiotypic antibody.
    Monroe JG; Gurish M; Dambrauskas J; Slaoui M; Lowy A; Greene MI
    J Immunol; 1985 Sep; 135(3):1589-97. PubMed ID: 3160770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.