These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 6179770)
21. [Repercussions of hyperthyroidism on the total cerebellar DNA contents in the rat at 6 and 35 days of age. Comparative effects of LT3 and DLT4 (author's transl)]. Dainat J; Rebière Experientia; 1977 Feb; 33(2):221-3. PubMed ID: 844564 [TBL] [Abstract][Full Text] [Related]
22. Stimulation of tubulin synthesis by thyroid hormone in the developing rat brain. Chaudhury S; Sarkar PK Biochim Biophys Acta; 1983 Sep; 763(2):93-8. PubMed ID: 6615893 [TBL] [Abstract][Full Text] [Related]
23. Thyroid hormones modulate ornithine decarboxylase in the immature rat cerebellum. Ruel J; Chénard C; Coulombe P; Dussault JH Can J Physiol Pharmacol; 1984 Oct; 62(10):1279-83. PubMed ID: 6509376 [TBL] [Abstract][Full Text] [Related]
24. Transplacental effects of 3,5-dimethyl-3'-isopropyl-L-thyronine on tubulin content in fetal brains in rats. Takahashi T Jpn J Physiol; 1984; 34(2):365-8. PubMed ID: 6471617 [TBL] [Abstract][Full Text] [Related]
25. Maturational patterns of iodothyronine phenolic and tyrosyl ring deiodinase activities in rat cerebrum, cerebellum, and hypothalamus. Kaplan MM; Yaskoski KA J Clin Invest; 1981 Apr; 67(4):1208-14. PubMed ID: 7204575 [TBL] [Abstract][Full Text] [Related]
26. Effects of thyroid hormone on food intake, hypothalamic Na/K ATPase activity and ATP content. Luo L; MacLean DB Brain Res; 2003 May; 973(2):233-9. PubMed ID: 12738067 [TBL] [Abstract][Full Text] [Related]
27. The effects of acute and chronic treatment with triiodothyronine and thyroxine on the hypothalamic and telencephalic catecholamine nerve terminal systems of the hypophysectomized male rat. Chronic treatment modulates catecholamine utilization in discrete catecholamine nerve terminal systems. Andersson K; Eneroth P Neuroendocrinology; 1985 May; 40(5):398-408. PubMed ID: 4010888 [TBL] [Abstract][Full Text] [Related]
28. Differential effect of retinoic acid and triiodothyronine on the age-related hypo-expression of neurogranin in rat. Féart C; Mingaud F; Enderlin V; Husson M; Alfos S; Higueret P; Pallet V Neurobiol Aging; 2005 May; 26(5):729-38. PubMed ID: 15708448 [TBL] [Abstract][Full Text] [Related]
29. Regulation of protein phosphorylation by triiodothyronine (T3) in neural cell cultures. Part I: Astrocytes. Ruel J; Gavaret JM; Luo M; Dussault JH Mol Cell Endocrinol; 1986 May; 45(2-3):223-32. PubMed ID: 3709962 [TBL] [Abstract][Full Text] [Related]
30. Divergent responses to thyroid hormone treatment of the different secondary germinal layers in the postnatal rat brain. Seress L J Hirnforsch; 1978; 19(5):395-403. PubMed ID: 748451 [TBL] [Abstract][Full Text] [Related]
31. Triiodothyronine-receptor complex in rat brain: effects of thyroidectomy, fasting, food restriction, and diabetes. Sanchez B; Jolin T Endocrinology; 1991 Jul; 129(1):361-7. PubMed ID: 2055194 [TBL] [Abstract][Full Text] [Related]
32. Biochemical effects of thyroid hormones in the developing brain. Balãzs R UCLA Forum Med Sci; 1971; 14():273-320. PubMed ID: 4945482 [No Abstract] [Full Text] [Related]
33. Thyroid hormones stimulate expression and modification of cytoskeletal protein during rat sciatic nerve regeneration. Schenker M; Riederer BM; Kuntzer T; Barakat-Walter I Brain Res; 2002 Dec; 957(2):259-70. PubMed ID: 12445968 [TBL] [Abstract][Full Text] [Related]
34. Triiodothyronine effects on RNA polymerase activities in isolated neuronal and glial nuclei of the mature rat brain cortex. Nakamura H; Yokota T; Akamizu T; Mori T; Imura H Metabolism; 1987 Oct; 36(10):931-4. PubMed ID: 3657513 [TBL] [Abstract][Full Text] [Related]
35. Effect of hyperphenylalaninemia induced during suckling on brain DNA metabolism in rat pups. Johnson RC; Shah SN Neurochem Res; 1984 Apr; 9(4):517-28. PubMed ID: 6235457 [TBL] [Abstract][Full Text] [Related]
36. Beta 1 isoform-specific regulation of a triiodothyronine-induced gene during cerebellar development. Strait KA; Zou L; Oppenheimer JH Mol Endocrinol; 1992 Nov; 6(11):1874-80. PubMed ID: 1282672 [TBL] [Abstract][Full Text] [Related]
37. Studies on the effect of chronic L-triiodothyronine (T3) treatment on brain Na+,K+-ATPase activity in the mature rat. Atterwill CK; Brown CG; Collins P Toxicology; 1987 Jan; 43(1):75-91. PubMed ID: 3027920 [TBL] [Abstract][Full Text] [Related]
38. Carbohydrate feeding increases total body and specific tissue 3,5,3'-triiodothyronine neogenesis in the rat. Gavin LA; Moeller M; McMahon FA; Castle JN; Gulli R; Cavalieri RR Endocrinology; 1988 Aug; 123(2):1075-81. PubMed ID: 3396499 [TBL] [Abstract][Full Text] [Related]
39. Influence of triiodothyronine (L-T3) on the morphological and biochemical development of fetal brain acetylcholinesterase-positive neurons cultured in a chemically defined medium. Garza R; Dussault JH; Puymirat J Brain Res; 1988 Oct; 471(2):287-97. PubMed ID: 3179753 [TBL] [Abstract][Full Text] [Related]
40. Effect of thyroid hormone on the abundance of Na,K-adenosine triphosphatase alpha-subunit messenger ribonucleic acid. Chaudhury S; Ismail-Beigi F; Gick GG; Levenson R; Edelman IS Mol Endocrinol; 1987 Jan; 1(1):83-9. PubMed ID: 2842662 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]