BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 6180293)

  • 1. High resolution phosphorus NMR spectroscopy of transfer ribonucleic acids.
    Gorenstein DG; Goldfield EM
    Mol Cell Biochem; 1982 Jul; 46(2):97-120. PubMed ID: 6180293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution phosphorus nuclear magnetic resonance spectroscopy of transfer ribonucleic acids: multiple conformations in the anticodon loop.
    Gorenstein DG; Goldfield EM
    Biochemistry; 1982 Nov; 21(23):5839-49. PubMed ID: 6185140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution phosphorus nuclear magnetic resonance spectra of yeast phenylalanine transfer ribonucleic acid. Melting curves and relaxation effects.
    Gorenstein DG; Luxon BA
    Biochemistry; 1979 Aug; 18(17):3796-804. PubMed ID: 383146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imino proton NMR assignments and ion-binding studies on Escherichia coli tRNA3Gly.
    Hyde EI
    Eur J Biochem; 1986 Feb; 155(1):57-68. PubMed ID: 2419133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 19F nuclear magnetic resonance as a probe of anticodon structure in 5-fluorouracil-substituted Escherichia coli transfer RNA.
    Gollnick P; Hardin CC; Horowitz J
    J Mol Biol; 1987 Oct; 197(3):571-84. PubMed ID: 2450205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton nuclear magnetic resonance of minor nucleosides in yeast phenylalanine transfer ribonucleic acid. Conformational changes as a consequence of aminoacylation, removal of the Y base, and codon--anticodon interaction.
    Davanloo P; Sprinzl M; Cramer F
    Biochemistry; 1979 Jul; 18(15):3189-99. PubMed ID: 380644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies of yeast phenylalanine-accepting transfer ribonucleic acid backbone structure in solution by phosphorus-31 nuclear magnetic resonance spectroscopy.
    Salemink PJ; Swarthof T; Hilbers CW
    Biochemistry; 1979 Aug; 18(16):3477-85. PubMed ID: 383144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorus-31 nuclear magnetic resonance of ethidium complexes with ribonucleic acid model systems and phenylalanine-accepting transfer ribonucleic acid.
    Goldfield EM; Luxon BA; Bowie V; Gorenstein DG
    Biochemistry; 1983 Jul; 22(14):3336-44. PubMed ID: 6555049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution phosphorus nuclear magnetic resonance spectra of yeast phenylalanine transfer ribonucleic acid. Metal ion effects and tentative partial assignment of signals.
    Gorenstein DG; Goldfield EM; Chen R; Kovar K; Luxon BA
    Biochemistry; 1981 Apr; 20(8):2141-50. PubMed ID: 7016174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorus-31 nuclear magnetic resonance of double- and triple-helical nucleic acids. Phosphorus-31 chemical shifts as a probe of phosphorus-oxygen ester bond torsional angles.
    Gorenstein DG; Luxon BA; Goldfield EM; Lai K; Vegeais D
    Biochemistry; 1982 Feb; 21(3):580-9. PubMed ID: 6175342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 31P magnetic resonance of tRNA.
    Guéron M; Shulman RG
    Proc Natl Acad Sci U S A; 1975 Sep; 72(9):3482-5. PubMed ID: 242005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorine-19 nuclear magnetic resonance study of codon-anticodon interaction in 5-fluorouracil-substituted E. coli transfer RNAs.
    Gollnick P; Hardin CC; Horowitz J
    Nucleic Acids Res; 1986 Jun; 14(11):4659-72. PubMed ID: 3520488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optically detected magnetic resonance of Escherichia coli glutamic acid specific transfer ribonucleic acid and its anticodon-anticodon complex with yeast phenylalanine-specific transfer ribonucleic acid.
    Taherian MR; Luk KF; Maki AH
    Biochemistry; 1984 Dec; 23(26):6614-8. PubMed ID: 6085008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Partial assignment of resonances in the 19F nuclear magnetic resonance spectra of 5-fluorouracil-substituted transfer RNAs.
    Hardin CC; Gollnick P; Horowitz J
    Biochemistry; 1988 Jan; 27(1):487-95. PubMed ID: 3280022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorine-19 nuclear magnetic resonance studies of the structure of 5-fluorouracil-substituted Escherichia coli transfer RNA.
    Hardin CC; Gollnick P; Kallenbach NR; Cohn M; Horowitz J
    Biochemistry; 1986 Sep; 25(19):5699-709. PubMed ID: 3535884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anticodon-anticodon interactions in solution. Studies of the self-association of yeast or Escherichia coli tRNAAsp and of their interactions with Escherichia coli tRNAVal.
    Romby P; Giegé R; Houssier C; Grosjean H
    J Mol Biol; 1985 Jul; 184(1):107-118. PubMed ID: 2411934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational changes of yeast tRNAphe as monitored by 31P NMR.
    Salemink PJ; Reijerse EJ; Mollevanger LC; Hilbers CW
    Eur J Biochem; 1981 Apr; 115(3):635-41. PubMed ID: 7238525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlations between fluorine-19 nuclear magnetic resonance chemical shift and the secondary and tertiary structure of 5-fluorouracil-substituted tRNA.
    Chu WC; Kintanar A; Horowitz J
    J Mol Biol; 1992 Oct; 227(4):1173-81. PubMed ID: 1279181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anticodon-anticodon interaction induces conformational changes in tRNA: yeast tRNAAsp, a model for tRNA-mRNA recognition.
    Moras D; Dock AC; Dumas P; Westhof E; Romby P; Ebel JP; Giegé R
    Proc Natl Acad Sci U S A; 1986 Feb; 83(4):932-6. PubMed ID: 3513167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assignment of imino proton spectra of yeast phenylalanine transfer ribonucleic acid.
    Roy S; Redfield AG
    Biochemistry; 1983 Mar; 22(6):1386-90. PubMed ID: 6301547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.