BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 61803)

  • 21. Expression of CD30 and CD30 ligand in cultured cell lines from human germ-cell tumors.
    Pera MF; Bennett W; Cerretti DP
    Lab Invest; 1997 Apr; 76(4):497-504. PubMed ID: 9111512
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Generation of embryonic stem cell lines from mouse blastocysts developed in vivo and in vitro: relation to Oct-4 expression.
    Tielens S; Verhasselt B; Liu J; Dhont M; Van Der Elst J; Cornelissen M
    Reproduction; 2006 Jul; 132(1):59-66. PubMed ID: 16816333
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carbohydrate antigens of embryonal carcinoma cells: changes upon differentiation.
    Fenderson BA; Andrews PW
    APMIS Suppl; 1992; 27():109-18. PubMed ID: 1355656
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Four new human germ cell tumor cell lines.
    Teshima S; Shimosato Y; Hirohashi S; Tome Y; Hayashi I; Kanazawa H; Kakizoe T
    Lab Invest; 1988 Sep; 59(3):328-36. PubMed ID: 2842544
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Germ cell tumors of the gonads: a selective review emphasizing problems in differential diagnosis, newly appreciated, and controversial issues.
    Ulbright TM
    Mod Pathol; 2005 Feb; 18 Suppl 2():S61-79. PubMed ID: 15761467
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The tumorigenicity of human embryonic stem cells.
    Blum B; Benvenisty N
    Adv Cancer Res; 2008; 100():133-58. PubMed ID: 18620095
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human Wnt-13 is developmentally regulated during the differentiation of NTERA-2 pluripotent human embryonal carcinoma cells.
    Wakeman JA; Walsh J; Andrews PW
    Oncogene; 1998 Jul; 17(2):179-86. PubMed ID: 9674702
    [TBL] [Abstract][Full Text] [Related]  

  • 28. UM-EC-1, a new hypodiploid human cell line derived from a poorly differentiated endometrial cancer.
    Grenman SE; Van Dyke DL; Worsham MJ; del Rosario F; Roberts JA; McClatchey KD; Schwartz DR; Babu VR; Carey TE
    Cancer Res; 1988 Apr; 48(7):1864-73. PubMed ID: 3349465
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mouse teratocarcinoma. Carbon source utilization patterns for growth and in vitro differentiation.
    Avner P; Dubois P; Nicolas JF; Jakob H; Gaillard J; Jacob F
    Exp Cell Res; 1977 Mar; 105(1):39-50. PubMed ID: 138595
    [No Abstract]   [Full Text] [Related]  

  • 30. Human embryonal carcinoma grown in athymic mice and in vitro.
    Tveit KM; Fodstad O; Brøgger A; Olsnes S
    Cancer Res; 1980 Mar; 40(3):949-53. PubMed ID: 7471109
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Altered differentiation, indefinite growth potential, diminished tumorigenicity, and suppressed chimerization potential of hybrids between mouse teratocarcinoma cells and thymocytes.
    Martin GM; Ogburn CE; Au K; Disteche CM
    J Exp Pathol; 1984; 1(2):103-33. PubMed ID: 6599936
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of human teratoma cell lines for their in vitro developmental properties and expression of embryonic and major histocompatibility locus-associated antigens.
    Avner P; Bono R; Berger R; Fellous M
    J Immunogenet; 1981 Apr; 8(2):151-62. PubMed ID: 7014724
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Karyotype analysis of teratocarcinomas and embryoid bodies of C3H mice.
    Iles SA; Evans EP
    J Embryol Exp Morphol; 1977 Apr; 38():77-91. PubMed ID: 886250
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Culturing and xenografting of primary colorectal carcinoma cells: comparison of in vitro, and in vivo model and primary tumor.
    Verstijnen CP; Arends JW; Moerkerk P; Schutte B; van der Linden E; Kuypers-Engelen B; Bosman FT
    Anticancer Res; 1988; 8(6):1193-200. PubMed ID: 3218955
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Murine embryonal carcinoma hybrids: decreased ability to spontaneously differentiate as a dominant trait.
    Oshima RG; McKerrow J; Cox D
    J Cell Physiol; 1981 Nov; 109(2):195-204. PubMed ID: 7197684
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro differentiation and progression of mouse mammary tumor cells.
    Sonnenberg A; Daams H; Calafat J; Hilgers J
    Cancer Res; 1986 Nov; 46(11):5913-22. PubMed ID: 3756929
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Human teratocarcinoma stem cells: glycolipid antigen expression and modulation during differentiation.
    Andrews PW
    J Cell Biochem; 1987 Dec; 35(4):321-32. PubMed ID: 3326883
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flow cytoenzymology of the early differentiation of mouse embryonal carcinoma cells.
    Swartzendruber DE; Cox KZ; Wilder ME
    Differentiation; 1980 Feb; 16(1):23-30. PubMed ID: 7429065
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Alkaline phosphatase activity in mouse teratoma.
    Berstine EG; Hooper ML; Grandchamp S; Ephrussi B
    Proc Natl Acad Sci U S A; 1973 Dec; 70(12):3899-903. PubMed ID: 4521215
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Human teratocarcinomas.
    Andrews PW
    Biochim Biophys Acta; 1988 Aug; 948(1):17-36. PubMed ID: 3293662
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.