These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 6180323)
1. E. coli F1-ATPase interacts with a membrane protein component of a proton channel. Walker JE; Saraste M; Gay NJ Nature; 1982 Aug; 298(5877):867-9. PubMed ID: 6180323 [TBL] [Abstract][Full Text] [Related]
2. Topological and functional aspects of the proton conductor, F0, of the Escherichia coli ATP-synthase. Schairer HU; Hoppe J; Sebald W; Friedl P Biosci Rep; 1982 Aug; 2(8):631-9. PubMed ID: 6291669 [TBL] [Abstract][Full Text] [Related]
3. Oligomycin sensitivity conferring protein of mitochondrial ATP synthase: deletions in the N-terminal end cause defects in interactions with F1, while deletions in the C-terminal end cause defects in interactions with F0. Joshi S; Cao GJ; Nath C; Shah J Biochemistry; 1996 Sep; 35(37):12094-103. PubMed ID: 8810915 [TBL] [Abstract][Full Text] [Related]
4. Subunit b of the membrane moiety (F0) of ATP synthase (F1F0) from Escherichia coli is indispensable for H+ translocation and binding of the water-soluble F1 moiety. Schneider E; Altendorf K Proc Natl Acad Sci U S A; 1984 Dec; 81(23):7279-83. PubMed ID: 6209711 [TBL] [Abstract][Full Text] [Related]
5. The nucleotide sequence of the atp genes coding for the F0 subunits a, b, c and the F1 subunit delta of the membrane bound ATP synthase of Escherichia coli. Nielsen J; Hansen FG; Hoppe J; Friedl P; von Meyenburg K Mol Gen Genet; 1981; 184(1):33-9. PubMed ID: 6278247 [TBL] [Abstract][Full Text] [Related]
6. Subunit delta of H(+)-ATPases: at the interface between proton flow and ATP synthesis. Engelbrecht S; Junge W Biochim Biophys Acta; 1990 Feb; 1015(3):379-90. PubMed ID: 2154253 [TBL] [Abstract][Full Text] [Related]
7. The atp operon: nucleotide sequence of the genes for the gamma, beta, and epsilon subunits of Escherichia coli ATP synthase. Saraste M; Gay NJ; Eberle A; Runswick MJ; Walker JE Nucleic Acids Res; 1981 Oct; 9(20):5287-96. PubMed ID: 6272217 [TBL] [Abstract][Full Text] [Related]
8. Structure and genetics of the H+-conducting F0 portion of the ATP synthase. Sebald W; Friedl P; Schairer HU; Hoppe J Ann N Y Acad Sci; 1982; 402():28-44. PubMed ID: 6301336 [No Abstract] [Full Text] [Related]
9. ATP synthase from bovine heart mitochondria: identification by proteolysis of sites in F0 exposed by removal of F1 and the oligomycin-sensitivity conferral protein. Collinson IR; Fearnley IM; Skehel JM; Runswick MJ; Walker JE Biochem J; 1994 Oct; 303 ( Pt 2)(Pt 2):639-45. PubMed ID: 7980427 [TBL] [Abstract][Full Text] [Related]
10. The DCCD-reactive aspartyl-residue of subunit C from the Escherichia coli ATP-synthase is important for the conformation of F0. Friedl P; Hoppe J; Schairer HU Biochem Biophys Res Commun; 1984 Apr; 120(2):527-33. PubMed ID: 6329170 [TBL] [Abstract][Full Text] [Related]
11. The F0F1-type ATP synthases of bacteria: structure and function of the F0 complex. Deckers-Hebestreit G; Altendorf K Annu Rev Microbiol; 1996; 50():791-824. PubMed ID: 8905099 [TBL] [Abstract][Full Text] [Related]
12. Polymorphism and conformational dynamics of F1-ATPases from bacterial membranes. A model for the regulation of these enzymes on the basis of molecular plasticity. Muñoz E Biochim Biophys Acta; 1982 May; 650(4):233-65. PubMed ID: 6178434 [No Abstract] [Full Text] [Related]
13. Structural aspects of proton-pumping ATPases. Walker JE; Fearnley IM; Lutter R; Todd RJ; Runswick MJ Philos Trans R Soc Lond B Biol Sci; 1990 Jan; 326(1236):367-78. PubMed ID: 1970643 [TBL] [Abstract][Full Text] [Related]
14. Assembly of a functional F0 of the proton-translocating ATPase of Escherichia coli. Klionsky DJ; Brusilow WS; Simoni RD J Biol Chem; 1983 Aug; 258(16):10136-43. PubMed ID: 6309770 [TBL] [Abstract][Full Text] [Related]
15. DNA sequence of a gene cluster coding for subunits of the F0 membrane sector of ATP synthase in Rhodospirillum rubrum. Support for modular evolution of the F1 and F0 sectors. Falk G; Walker JE Biochem J; 1988 Aug; 254(1):109-22. PubMed ID: 2902844 [TBL] [Abstract][Full Text] [Related]
16. The ATP synthase (F0-F1) complex in oxidative phosphorylation. Issartel JP; Dupuis A; Garin J; Lunardi J; Michel L; Vignais PV Experientia; 1992 Apr; 48(4):351-62. PubMed ID: 1533842 [TBL] [Abstract][Full Text] [Related]
17. The atp operon: nucleotide sequence of the promoter and the genes for the membrane proteins, and the delta subunit of Escherichia coli ATP-synthase. Gay NJ; Walker JE Nucleic Acids Res; 1981 Aug; 9(16):3919-26. PubMed ID: 6272190 [TBL] [Abstract][Full Text] [Related]
18. Structure and function of H+-ATPase. Kagawa Y; Sone N; Hirata H; Yoshida M J Bioenerg Biomembr; 1979 Aug; 11(3-4):39-78. PubMed ID: 233471 [TBL] [Abstract][Full Text] [Related]
19. The membrane-associated ATPase from Sulfolobus acidocaldarius is distantly related to F1-ATPase as assessed from the primary structure of its alpha-subunit. Denda K; Konishi J; Oshima T; Date T; Yoshida M J Biol Chem; 1988 May; 263(13):6012-5. PubMed ID: 2896191 [TBL] [Abstract][Full Text] [Related]
20. The epsilon subunit of bacterial and chloroplast F(1)F(0) ATPases. Structure, arrangement, and role of the epsilon subunit in energy coupling within the complex. Capaldi RA; Schulenberg B Biochim Biophys Acta; 2000 May; 1458(2-3):263-9. PubMed ID: 10838042 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]