These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 6181070)

  • 1. Ultrastructural observations of isolated intact and fragmented junctions of skeletal muscle by use of tannic acid mordanting.
    Brunschwig JP; Brandt N; Caswell AH; Lukeman DS
    J Cell Biol; 1982 Jun; 93(3):533-42. PubMed ID: 6181070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and morphology of sarcoplasmic reticulum terminal cisternae from rabbit skeletal muscle.
    Saito A; Seiler S; Chu A; Fleischer S
    J Cell Biol; 1984 Sep; 99(3):875-85. PubMed ID: 6147356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and extraction of proteins that compose the triad junction of skeletal muscle.
    Caswell AH; Brunschwig JP
    J Cell Biol; 1984 Sep; 99(3):929-39. PubMed ID: 6470045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a constituent of the junctional feet linking terminal cisternae to transverse tubules in skeletal muscle.
    Cadwell JJ; Caswell AH
    J Cell Biol; 1982 Jun; 93(3):543-50. PubMed ID: 6749861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphology of isolated triads.
    Mitchell RD; Saito A; Palade P; Fleischer S
    J Cell Biol; 1983 Apr; 96(4):1017-29. PubMed ID: 6187754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bridging structures spanning the junctioning gap at the triad of skeletal muscle.
    Somlyo AV
    J Cell Biol; 1979 Mar; 80(3):743-50. PubMed ID: 313399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localization by immunoelectron microscopy of spanning protein of triad junction in terminal cisternae/triad vesicles.
    Kawamoto RM; Brunschwig JP; Caswell AH
    J Muscle Res Cell Motil; 1988 Aug; 9(4):334-43. PubMed ID: 3220950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determinants of triad junction reformation: identification and isolation of an endogenous promotor for junction reformation in skeletal muscle.
    Corbett AM; Caswell AH; Brandt NR; Brunschwig JP
    J Membr Biol; 1985; 86(3):267-76. PubMed ID: 4046012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a new subpopulation of triad junctions isolated from skeletal muscle; morphological correlations with intact muscle.
    Kim KC; Caswell AH; Brunschwig JP; Brandt NR
    J Membr Biol; 1990 Feb; 113(3):221-35. PubMed ID: 2159516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of detergent on the contractility and ultrastructure of frog skeletal muscle.
    Yoshioka T; Nagami K; Tamaki T; Nakano S
    Jpn J Physiol; 1986; 36(2):379-90. PubMed ID: 3735796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastructure of the calcium release channel of sarcoplasmic reticulum.
    Saito A; Inui M; Radermacher M; Frank J; Fleischer S
    J Cell Biol; 1988 Jul; 107(1):211-9. PubMed ID: 2455723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane asymmetry and enhanced ultrastructural detail of sarcoplasmic reticulum revealed with use of tannic acid.
    Saito A; Wang CT; Fleischer S
    J Cell Biol; 1978 Dec; 79(3):601-16. PubMed ID: 83321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycogen-membrane complexes in denervated human skeletal muscle.
    Saito A; Mrak RE; Evans OB; Fleischer S
    J Ultrastruct Res; 1984 Feb; 86(2):149-61. PubMed ID: 6737563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A silver-reducing component in rat striated muscle. II. Isolated sarcoplasmic reticulum vesicles.
    Tandler CJ; Gonzalez DA; Remorini PG; Pellegrino de Iraldi A
    Histochemistry; 1989; 92(1):23-7. PubMed ID: 2475467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional architecture of the calcium channel/foot structure of sarcoplasmic reticulum.
    Wagenknecht T; Grassucci R; Frank J; Saito A; Inui M; Fleischer S
    Nature; 1989 Mar; 338(6211):167-70. PubMed ID: 2537473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subunit structure of junctional feet in triads of skeletal muscle: a freeze-drying, rotary-shadowing study.
    Ferguson DG; Schwartz HW; Franzini-Armstrong C
    J Cell Biol; 1984 Nov; 99(5):1735-42. PubMed ID: 6386826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle.
    Block BA; Imagawa T; Campbell KP; Franzini-Armstrong C
    J Cell Biol; 1988 Dec; 107(6 Pt 2):2587-600. PubMed ID: 2849609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feet, bridges, and pillars in triad junctions of mammalian skeletal muscle: their possible relationship to calcium buffers in terminal cisternae and T-tubules and to excitation-contraction coupling.
    Dulhunty AF
    J Membr Biol; 1989 Jul; 109(1):73-83. PubMed ID: 2769737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct attachment of membrane to the Z-band of rabbit skeletal myofibrils.
    Kentish JC
    J Muscle Res Cell Motil; 1983 Dec; 4(6):663-9. PubMed ID: 6668357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The fine structure of the deep muscle lamellae and their sarcoplasmic reticulum in Branchiostoma lanceolatum.
    Grocki K
    Eur J Cell Biol; 1982 Oct; 28(2):202-12. PubMed ID: 7173219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.