BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 6181215)

  • 21. [Ultrastructure and nerve fibers of the leptomeninges].
    Carrato Ibáñez A; Marín Girón F
    Trab Inst Cajal Invest Biol; 1966; 58():69-92. PubMed ID: 5989652
    [No Abstract]   [Full Text] [Related]  

  • 22. [Light microscopical studies on the structure of the leptomeninx encephali of Gallus domesticus (author's transl)].
    Böhme G
    Z Anat Entwicklungsgesch; 1973 Jul; 140(2):215-30. PubMed ID: 4748699
    [No Abstract]   [Full Text] [Related]  

  • 23. Ultrastructure of the arachnoid mater in relation to outflow of cerebrospinal fluid. A new concept.
    Tripathi RC
    Lancet; 1973 Jul; 2(7819):8-11. PubMed ID: 4123339
    [No Abstract]   [Full Text] [Related]  

  • 24. Scanning electron microscopy of the subarachnoid space in the dog. I. Spinal cord levels.
    Cloyd MW; Low FN
    J Comp Neurol; 1974 Feb; 153(4):325-68. PubMed ID: 4816519
    [No Abstract]   [Full Text] [Related]  

  • 25. Scanning electron microscopy of the subarachnoid space in the dog: inflammatory response after injection of defibrinated chicken erythrocytes.
    Persky B; Low FN
    Anat Rec; 1985 Jul; 212(3):307-18. PubMed ID: 4061882
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Absence of neuronal and glial proteins in human and rat leptomeninges in situ.
    Calingasan NY; Bernstein JJ; Blass JP
    J Neurol Sci; 1996 Dec; 144(1-2):21-3. PubMed ID: 8994100
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence for transforming growth factor-beta expression in human leptomeningeal cells and transforming growth factor-beta-like activity in human cerebrospinal fluid.
    Johnson MD; Gold LI; Moses HL
    Lab Invest; 1992 Sep; 67(3):360-8. PubMed ID: 1328762
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The meninges as barriers and facilitators for the movement of fluid, cells and pathogens related to the rodent and human CNS.
    Weller RO; Sharp MM; Christodoulides M; Carare RO; Møllgård K
    Acta Neuropathol; 2018 Mar; 135(3):363-385. PubMed ID: 29368214
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [The space surrounding the spinal cord. Constitution, organization and relationship with the cerebrospinal fluid].
    Maillot C
    J Radiol; 1990 Oct; 71(10):539-47. PubMed ID: 2280378
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Developmental morphology of the subarachnoid space and contiguous structures in the mouse.
    McLone DG; Bondareff W
    Am J Anat; 1975 Mar; 142(3):273-93. PubMed ID: 1119412
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An electron-microscopic study of bacterial meningitis. I. Experimental alterations in the leptomeninges and subarachnoid space.
    NELSON E; BLINZINGER K; HAGER H
    Arch Neurol; 1962 May; 6():390-403. PubMed ID: 14478902
    [No Abstract]   [Full Text] [Related]  

  • 32. Engineering subarachnoid trabeculae with electrospun poly(caprolactone) (PCL) scaffolds to study leptomeningeal metastasis in medulloblastoma.
    Fowler MJ; Riley CO; Tomasson E; Mehta S; Grande-Allen J; Ballester L; Sandberg DI; Janssen CF; Sirianni RW
    Biomater Adv; 2023 Dec; 155():213646. PubMed ID: 37918168
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distribution and phenotype of dendritic cells and resident tissue macrophages in the dura mater, leptomeninges, and choroid plexus of the rat brain as demonstrated in wholemount preparations.
    McMenamin PG
    J Comp Neurol; 1999 Mar; 405(4):553-62. PubMed ID: 10098945
    [TBL] [Abstract][Full Text] [Related]  

  • 34. VE-cadherin in arachnoid and pia mater cells serves as a suitable landmark for in vivo imaging of CNS immune surveillance and inflammation.
    Mapunda JA; Pareja J; Vladymyrov M; Bouillet E; Hélie P; Pleskač P; Barcos S; Andrae J; Vestweber D; McDonald DM; Betsholtz C; Deutsch U; Proulx ST; Engelhardt B
    Nat Commun; 2023 Sep; 14(1):5837. PubMed ID: 37730744
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Large-scale morphometry of the subarachnoid space of the optic nerve.
    Rossinelli D; Killer HE; Meyer P; Knott G; Fourestey G; Kurtcuoglu V; Kohler C; Gruber P; Remonda L; Neutzner A; Berberat J
    Fluids Barriers CNS; 2023 Mar; 20(1):21. PubMed ID: 36944985
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Scanning electron microscopy of the subarachnoid space in the dog. III. Cranial levels.
    Allen DJ; Low FN
    J Comp Neurol; 1975 Jun; 161(4):515-39. PubMed ID: 1094039
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of the pia mater in the transfer of substances in and out of the cerebrospinal fluid.
    Wright PM; Nogueira GJ; Levin E
    Exp Brain Res; 1971; 113(3):294-305. PubMed ID: 5098308
    [No Abstract]   [Full Text] [Related]  

  • 38. Scanning electron microscopy of the subarachnoid space in the dog. IV. Subarachnoid macrophages.
    Malloy JJ; Low FN
    J Comp Neurol; 1976 Jun; 167(3):257-83. PubMed ID: 1270624
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vacuolar transcellular channels as a drainage pathway for cerebrospinal fluid.
    Tripathi BJ; Tripathi RC
    J Physiol; 1974 May; 239(1):195-206. PubMed ID: 4369428
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The fine structure of intracerebral vessels.
    Dahl E
    Z Zellforsch Mikrosk Anat; 1973 Dec; 145(4):577-86. PubMed ID: 4204401
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.