These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 6181977)

  • 1. Machine detection of spike-wave activity in the EEG and its accuracy compared with visual interpretation.
    Whisler JW; ReMine WJ; Leppik IE; McLain LW; Gumnit RJ
    Electroencephalogr Clin Neurophysiol; 1982 Nov; 54(5):541-51. PubMed ID: 6181977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic detection of spike-and-wave bursts in ambulatory EEG recordings.
    Koffler DJ; Gotman J
    Electroencephalogr Clin Neurophysiol; 1985 Aug; 61(2):165-80. PubMed ID: 2410228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic recognition of spike and wave bursts.
    Principe JC; Smith JR
    Electroencephalogr Clin Neurophysiol Suppl; 1985; 37():115-32. PubMed ID: 3924556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast evaluation of interictal spikes in long-term EEG by hyper-clustering.
    Scherg M; Ille N; Weckesser D; Ebert A; Ostendorf A; Boppel T; Schubert S; Larsson PG; Henning O; Bast T
    Epilepsia; 2012 Jul; 53(7):1196-204. PubMed ID: 22578143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SADE3: an effective system for automated detection of epileptiform events in long-term EEG based on context information.
    Argoud FI; De Azevedo FM; Neto JM; Grillo E
    Med Biol Eng Comput; 2006 Jun; 44(6):459-70. PubMed ID: 16937197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High inter-reviewer variability of spike detection on intracranial EEG addressed by an automated multi-channel algorithm.
    Barkmeier DT; Shah AK; Flanagan D; Atkinson MD; Agarwal R; Fuerst DR; Jafari-Khouzani K; Loeb JA
    Clin Neurophysiol; 2012 Jun; 123(6):1088-95. PubMed ID: 22033028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time detection of epileptiform activity in the EEG: a blinded clinical trial.
    Black MA; Jones RD; Carroll GJ; Dingle AA; Donaldson IM; Parkin PJ
    Clin Electroencephalogr; 2000 Jul; 31(3):122-30. PubMed ID: 10923198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cluster-based spike detection algorithm adapts to interpatient and intrapatient variation in spike morphology.
    Nonclercq A; Foulon M; Verheulpen D; De Cock C; Buzatu M; Mathys P; Van Bogaert P
    J Neurosci Methods; 2012 Sep; 210(2):259-65. PubMed ID: 22850558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of novel computer detectors and human performance for spike detection in intracranial EEG.
    Brown MW; Porter BE; Dlugos DJ; Keating J; Gardner AB; Storm PB; Marsh ED
    Clin Neurophysiol; 2007 Aug; 118(8):1744-52. PubMed ID: 17544322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The effects of anticonvulsants on the epileptiform discharges--study by 24-hour ambulatory cassette EEG system].
    Liou WY; Tsao WL; Chang MK; Chu ML
    Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi; 1994; 35(6):522-9. PubMed ID: 7831985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer recognition of generalized spike-wave discharges.
    Ehrenberg BL; Penry JK
    Electroencephalogr Clin Neurophysiol; 1976 Jul; 41(1):25-36. PubMed ID: 58766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MEG versus EEG: influence of background activity on interictal spike detection.
    Ramantani G; Boor R; Paetau R; Ille N; Feneberg R; Rupp A; Boppel T; Scherg M; Rating D; Bast T
    J Clin Neurophysiol; 2006 Dec; 23(6):498-508. PubMed ID: 17143138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic recognition of epileptic seizures in the EEG.
    Gotman J
    Electroencephalogr Clin Neurophysiol; 1982 Nov; 54(5):530-40. PubMed ID: 6181976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seizure detection algorithm for neonates based on wave-sequence analysis.
    Navakatikyan MA; Colditz PB; Burke CJ; Inder TE; Richmond J; Williams CE
    Clin Neurophysiol; 2006 Jun; 117(6):1190-203. PubMed ID: 16621690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spike detection. I. Correlation and reliability of human experts.
    Wilson SB; Harner RN; Duffy FH; Tharp BR; Nuwer MR; Sperling MR
    Electroencephalogr Clin Neurophysiol; 1996 Mar; 98(3):186-98. PubMed ID: 8631278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An automatic spike detection system based on elimination of false positives using the large-area context in the scalp EEG.
    Ji Z; Sugi T; Goto S; Wang X; Ikeda A; Nagamine T; Shibasaki H; Nakamura M
    IEEE Trans Biomed Eng; 2011 Sep; 58(9):2478-88. PubMed ID: 21622069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epileptiform electroencephalographic patterns.
    Westmoreland BF
    Mayo Clin Proc; 1996 May; 71(5):501-11. PubMed ID: 8628033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-speed automatic analysis of eeg spike and wave activity using an analogue detection and microcomputer plotting system.
    Quy RJ; Fitch P; Willison RG
    Electroencephalogr Clin Neurophysiol; 1980 Jul; 49(1-2):187-9. PubMed ID: 6159163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of epileptiform activity by human interpreters: blinded comparison between electroencephalography and magnetoencephalography.
    Iwasaki M; Pestana E; Burgess RC; Lüders HO; Shamoto H; Nakasato N
    Epilepsia; 2005 Jan; 46(1):59-68. PubMed ID: 15660769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of artifacts from high energy bursts in neonatal EEG.
    Bhattacharyya S; Biswas A; Mukherjee J; Majumdar AK; Majumdar B; Mukherjee S; Singh AK
    Comput Biol Med; 2013 Nov; 43(11):1804-14. PubMed ID: 24209926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.