These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 6183254)

  • 1. Kinetic study on chemical modification of taka-amylase A. I. Location and role of tryptophan residues.
    Kita Y; Fukazawa M; Nitta Y; Watanabe T
    J Biochem; 1982 Sep; 92(3):653-9. PubMed ID: 6183254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic study on chemical modification of Taka-amylase A. II. Ethoxycarbonylation of histidine residues.
    Kita Y; Sakaguchi S; Nitta Y; Watanabe T
    J Biochem; 1982 Nov; 92(5):1499-504. PubMed ID: 6185471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tryptophan residues of saccharifying alpha-amylase from Bacillus subtilis. A kinetic discrimination of states of tryptophan residues using N-bromosuccinimide.
    Fujimori H; Ohnishi M; Hiromi K
    J Biochem; 1978 May; 83(5):1503-10. PubMed ID: 96111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the subsite structure of amylases. IV. Tryptophan residues of glucoamylase from Rhizopus niveus studied by chemical modification with N-bromosuccinimide.
    Ohnishi M; Hiromi K
    J Biochem; 1976 Jan; 79(1):11-16. PubMed ID: 939754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An active center tryptophan residue in liquefying alpha-amylase from Bacillus amyloliquefaciens.
    Kochhar S; Dua RD
    Biochem Biophys Res Commun; 1985 Jan; 126(2):966-73. PubMed ID: 3872124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification of subsite Lys residue induced a large increase in maltosidase activity of Taka-amylase A.
    Kobayashi M; Miura M; Ichishima E
    Biochem Biophys Res Commun; 1992 Feb; 183(1):321-6. PubMed ID: 1543502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Chemical modification of tryptophan residues of leucyl tRNA synthetase by N-bromosuccinimide and 2-hydroxy-5-nitrobenzyl bromide].
    Korneliuk AI; Shilin VV; Gudzera OI; Rozhko OT; Matsuka GKh
    Bioorg Khim; 1985 May; 11(5):605-12. PubMed ID: 3929794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the chemical modification of tryptophan residues in thermolysin and in talopeptin (MKI) with N-bromosuccinimide.
    Kitagishi K; Hiromi K
    J Biochem; 1983 Jul; 94(1):129-35. PubMed ID: 6619105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The reactivity of tryptophan residues in proteins. Stopped-flow kinetics of fluorescence quenching.
    Peterman BF; Laidler KJ
    Biochim Biophys Acta; 1979 Apr; 577(2):314-23. PubMed ID: 454650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the substrate specificity of Taka-amylase A. XII. Investigation of the active site of Taka-amylase A by examining the properties of p-phenylazobenzoyl Taka-amylase A.
    Omichi K; Kasai S; Matsushima Y
    J Biochem; 1975 Sep; 78(3):493-8. PubMed ID: 1225912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the active site of glyoxalase I from human erythrocytes by use of the strong reversible inhibitor S-p-bromobenzylglutathione and metal substitutions.
    Aronsson AC; Sellin S; Tibbelin G; Mannervik B
    Biochem J; 1981 Jul; 197(1):67-75. PubMed ID: 7317034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stopped-flow studies on the chemical modification with N-bromosuccinimide of model compounds of tryptophan residues.
    Ohnishi M; Kawagishi T; Abe T; Hiromi K
    J Biochem; 1980 Jan; 87(1):273-9. PubMed ID: 7358635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N-bromosuccinimide oxidation of a glucoamylase from Aspergillus saitoi.
    Inokuchi N; Takahashi T; Yoshimoto A; Irie M
    J Biochem; 1982 May; 91(5):1661-8. PubMed ID: 6807973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical modification of xylanases: evidence for essential tryptophan and cysteine residues at the active site.
    Deshpande V; Hinge J; Rao M
    Biochim Biophys Acta; 1990 Nov; 1041(2):172-7. PubMed ID: 2265203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Modification of tryptophan residues in immunoglobulin M by 2-hydroxy-5-nitrobenzyl bromide].
    Lapuk VA; Khatiashvili NM; Chukhrova AI; Kaverzneva ED
    Biokhimiia; 1985 Feb; 50(2):237-42. PubMed ID: 3921061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Essential tryptophan residues of ribulose 1,5-bisphosphate carboxylase.
    Purohit US; Bhagwat AS
    Indian J Biochem Biophys; 1990 Apr; 27(2):81-7. PubMed ID: 2354851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A kinetic and fluorimetric investigation of papain modified at tryptophan-69 and -177 by N-bromosuccinimide.
    Lowe G; Whitworth AS
    Biochem J; 1974 Aug; 141(2):503-15. PubMed ID: 4455219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of modification on physico-chemical and biological properties of haptoglobin. Reaction with N-bromusuccinimide and 2-hydroxy-5-nitrobenzyl bromide.
    Kaţnik I; Dobryszycka W
    Acta Biochim Pol; 1978; 25(4):325-32. PubMed ID: 108884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence and chemical modification of tryptophan as probes of structure of GTP:AMP phosphotransferase from beef heart mitochondria.
    Tomasselli AG; Dougherty JJ; Noda LH
    Eur J Biochem; 1983 Nov; 136(2):297-302. PubMed ID: 6313362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An essential tryptophan residue of green crab (syclla serrata) alkaline phosphatase.
    Zheng WZ; Chen QX; Zhao H; Zhang Z; Zhang W; Zhou HM
    Biochem Mol Biol Int; 1997 Apr; 41(5):951-9. PubMed ID: 9137826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.