These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 6183279)

  • 1. A monoclonal antibody detaches embryonic skeletal muscle from extracellular matrices.
    Neff NT; Lowrey C; Decker C; Tovar A; Damsky C; Buck C; Horwitz AF
    J Cell Biol; 1982 Nov; 95(2 Pt 1):654-66. PubMed ID: 6183279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution of the cell substratum attachment (CSAT) antigen on myogenic and fibroblastic cells in culture.
    Damsky CH; Knudsen KA; Bradley D; Buck CA; Horwitz AF
    J Cell Biol; 1985 May; 100(5):1528-39. PubMed ID: 3921554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunological studies of the embryonic muscle cell surface. Antiserum to the prefusion myoblast.
    Friedlander M; Fischman DA
    J Cell Biol; 1979 Apr; 81(1):193-214. PubMed ID: 90049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adhesive multiplicity in the interaction of embryonic fibroblasts and myoblasts with extracellular matrices.
    Decker C; Greggs R; Duggan K; Stubbs J; Horwitz A
    J Cell Biol; 1984 Oct; 99(4 Pt 1):1398-404. PubMed ID: 6480698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antibodies to 100- and 60-kDa surface proteins inhibit substratum attachment and differentiation of rodent skeletal myoblasts.
    Engel L; White JM
    Dev Biol; 1990 Jul; 140(1):196-208. PubMed ID: 2358118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of a developmentally regulated antigen on the surface of skeletal and cardiac muscle cells.
    Kaufman SJ; Foster RF; Haye KR; Faiman LE
    J Cell Biol; 1985 Jun; 100(6):1977-87. PubMed ID: 3889014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitation of changes in cell surface determinants during skeletal muscle cell differentiation using monospecific antibody.
    Grove BK; Schwartz G; Stockdale FE
    J Supramol Struct Cell Biochem; 1981; 17(2):147-52. PubMed ID: 6172592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monoclonal antibodies which alter the morphology of cultured chick myogenic cells.
    Greve JM; Gottlieb DI
    J Cell Biochem; 1982; 18(2):221-9. PubMed ID: 7068780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a plasma membrane glycoprotein common to myoblasts, skeletal muscle satellite cells, and glia.
    Wakshull E; Bayne EK; Chiquet M; Fambrough DM
    Dev Biol; 1983 Dec; 100(2):464-77. PubMed ID: 6360753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of laminin and fibronectin in selecting myogenic versus fibrogenic cells from skeletal muscle cells in vitro.
    Kühl U; Ocalan M; Timpl R; von der Mark K
    Dev Biol; 1986 Oct; 117(2):628-35. PubMed ID: 3758484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Longitudinal growth of skeletal myotubes in vitro in a new horizontal mechanical cell stimulator.
    Vandenburgh HH; Karlisch P
    In Vitro Cell Dev Biol; 1989 Jul; 25(7):607-16. PubMed ID: 2753848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A monoclonal antibody identifies a glycoprotein complex involved in cell-substratum adhesion.
    Knudsen KA; Horwitz AF; Buck CA
    Exp Cell Res; 1985 Mar; 157(1):218-26. PubMed ID: 2578969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and characterization of a monoclonal antibody that inhibits myoblast fusion of avian skeletal myoblasts.
    Hyodo N; Kim J
    Exp Cell Res; 1994 May; 212(1):120-31. PubMed ID: 8174634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of muscle fibroblasts in the deposition of type-IV collagen in the basal lamina of myotubes.
    Kühl U; Ocalan M; Timpl R; Mayne R; Hay E; von der Mark K
    Differentiation; 1984; 28(2):164-72. PubMed ID: 6396135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of a monoclonal antibody and expression of its antigen associated with myogenic differentiation on spontaneous and artificial myotubes derived from avian myoblasts.
    Saiuchi M; Nunoura N; Kim J
    Cell Struct Funct; 1993 Oct; 18(5):285-96. PubMed ID: 7513264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A monoclonal antibody which binds to the surface of chick brain cells and myotubes: cell selectivity and properties of the antigen.
    Lemmon V; Staros EB; Perry HE; Gottlieb DI
    Brain Res; 1982 Mar; 255(3):349-60. PubMed ID: 7039768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An integral glycoprotein associated with the membrane attachment sites of actin microfilaments.
    Rogalski AA; Singer SJ
    J Cell Biol; 1985 Sep; 101(3):785-801. PubMed ID: 3897248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental regulation of the multiple myogenic cell lineages of the avian embryo.
    Miller JB; Stockdale FE
    J Cell Biol; 1986 Dec; 103(6 Pt 1):2197-208. PubMed ID: 3782296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Comparison of promoting the proliferation and fusion of myoblast between conditioned media from fibroblasts of chick embryo and fetal mouse].
    Gu JF; Yan YQ; Zhou ZH
    Sheng Li Xue Bao; 1989 Apr; 41(2):191-5. PubMed ID: 2762845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression and cellular localization of glucose transporters (GLUT1, GLUT3, GLUT4) during differentiation of myogenic cells isolated from rat foetuses.
    Guillet-Deniau I; Leturque A; Girard J
    J Cell Sci; 1994 Mar; 107 ( Pt 3)():487-96. PubMed ID: 8006068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.