These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 6183668)

  • 1. Susceptibility of mice to phenytoin-induced cleft palate correlated with inhibition of fetal palatal RNA and protein synthesis (41255).
    Sonawane BR; Goldman AS
    Proc Soc Exp Biol Med; 1981 Nov; 168(2):175-9. PubMed ID: 6183668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The in vivo biosynthesis of embryonic proteins after maternal administration of phenytoin in the mouse.
    Hicks HE; Banes AJ
    Proc Soc Exp Biol Med; 1985 Dec; 180(3):483-7. PubMed ID: 4080697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical mechanism of glucocorticoid-and phenytoin-induced cleft palate.
    Goldman AS
    Curr Top Dev Biol; 1984; 19():217-39. PubMed ID: 6389029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Palatal development and the arachidonic acid cascade.
    Piddington RL; Goldman AS
    Prog Clin Biol Res; 1985; 171():295-306. PubMed ID: 3885248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. H-2 histocompatibility region influences the inhibition of arachidonic acid cascade by dexamethasone and phenytoin in mouse embryonic palates.
    Gupta C; Katsumata M; Goldman AS
    J Craniofac Genet Dev Biol; 1985; 5(3):277-85. PubMed ID: 4044790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tbx22 expressions during palatal development in fetuses with glucocorticoid-/alcohol-induced C57BL/6N cleft palates.
    Kim SM; Lee JH; Jabaiti S; Lee SK; Choi JY
    J Craniofac Surg; 2009 Sep; 20(5):1316-26. PubMed ID: 19816249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maternal phenytoin administration affects DNA and protein synthesis in embryonic primary palates.
    Hicks HE; Johnston MC; Banes AJ
    Teratology; 1983 Dec; 28(3):389-97. PubMed ID: 6665737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of hypervitaminosis A on rat palatal development.
    Lorente CA; Miller SA
    Teratology; 1978 Oct; 18(2):277-84. PubMed ID: 152485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenytoin and carbamazepine in production of cleft palates in mice. Comparison of teratogenic effects.
    Paulson RB; Paulson GW; Jreissaty S
    Arch Neurol; 1979 Dec; 36(13):832-6. PubMed ID: 508146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenytoin (dilantin)-induced cleft lip and palate in A/J mice: a scanning and transmission electron microscopic study.
    Sulik KK; Johnston MC; Ambrose LJ; Dorgan D
    Anat Rec; 1979 Oct; 195(2):243-55. PubMed ID: 507390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenytoin-induced cleft palate: evidence for embryonic cardiac bradyarrhythmia due to inhibition of delayed rectifier K+ channels resulting in hypoxia-reoxygenation damage.
    Azarbayjani F; Danielsson BR
    Teratology; 2001 Mar; 63(3):152-60. PubMed ID: 11283972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Palate morphology and fetal movements in mice after DPH.
    Walker BE
    J Dent Res; 1979 Jul; 58(7):1740-7. PubMed ID: 286722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maternal hyperoxia greatly reduces the incidence of phenytoin-induced cleft lip and palate in A/J mice.
    Millicovsky G; Johnston MC
    Science; 1981 May; 212(4495):671-2. PubMed ID: 7221553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of phenytoin on Satb2 and Hoxa2 gene expressions in mouse embryonic craniofacial tissue.
    Mao XY; Tang SJ
    Biochem Cell Biol; 2010 Aug; 88(4):731-5. PubMed ID: 20651846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of embryonic palatal shelf horizontalization and medial edge epithelial breakdown by cortisol: role of H-2 in the mouse.
    Goldman AS; Herold R; Piddington R
    J Craniofac Genet Dev Biol; 1988; 8(2):135-45. PubMed ID: 3182969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An in vitro screening system for characterizing the cleft palate-inducing potential of chemicals and underlying mechanisms.
    Shimizu N; Aoyama H; Hatakenaka N; Kaneda M; Teramoto S
    Reprod Toxicol; 2001; 15(6):665-72. PubMed ID: 11738519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The CORT-GR signal transduction pathway and CORT-induced cleft palate in H-2 congenic mice.
    Jaskoll T; Choy HA; Chen H; Melnick M
    J Craniofac Genet Dev Biol; 1995; 15(2):57-65. PubMed ID: 7635930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental study on protection of vitamin B6 on TCDD-induced palatal cleft formation in the mice.
    Li CH; He W; Meng T; Shi B
    Birth Defects Res B Dev Reprod Toxicol; 2009 Oct; 86(5):357-61. PubMed ID: 19718688
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Park J; Nakatomi M; Sasaguri M; Habu M; Takahashi O; Yoshiga D; Matsuyama K; Kataoka S; Toyono T; Seta Y; Peters H; Tominaga K
    Cleft Palate Craniofac J; 2021 Jun; 58(6):697-706. PubMed ID: 34047208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain differences between C57BL/6 and SWV mice in time of palate closure and induction of palatal slit and cleft palate.
    Kusanagi T
    Teratology; 1985 Apr; 31(2):279-83. PubMed ID: 3992497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.