These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 6184210)

  • 1. Affinity sensor: a new technique for developing implantable sensors for glucose and other metabolites.
    Schultz JS; Mansouri S; Goldstein IJ
    Diabetes Care; 1982; 5(3):245-53. PubMed ID: 6184210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the response time of an in vivo glucose affinity sensor.
    Clark HR; Barbari TA; Rao G
    Biotechnol Prog; 1999; 15(2):259-66. PubMed ID: 10194402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A label-free fiber-optic Turbidity Affinity Sensor (TAS) for continuous glucose monitoring.
    Dutt-Ballerstadt R; Evans C; Pillai AP; Gowda A
    Biosens Bioelectron; 2014 Nov; 61():280-4. PubMed ID: 24906086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo performance evaluation of a transdermal near- infrared fluorescence resonance energy transfer affinity sensor for continuous glucose monitoring.
    Ballerstadt R; Evans C; Gowda A; McNichols R
    Diabetes Technol Ther; 2006 Jun; 8(3):296-311. PubMed ID: 16800751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The assessment of potentially interfering metabolites and dietary components in blood using an osmotic glucose sensor based on the concanavalin A-dextran affinity assay.
    Krushinitskaya O; Tønnessen TI; Jakobsen H; Johannessen E
    Biosens Bioelectron; 2011 Oct; 28(1):195-203. PubMed ID: 21816599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Affinity-based turbidity sensor for glucose monitoring by optical coherence tomography: toward the development of an implantable sensor.
    Ballerstadt R; Kholodnykh A; Evans C; Boretsky A; Motamedi M; Gowda A; McNichols R
    Anal Chem; 2007 Sep; 79(18):6965-74. PubMed ID: 17702528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fluorescence affinity hollow fiber sensor for continuous transdermal glucose monitoring.
    Ballerstadt R; Schultz JS
    Anal Chem; 2000 Sep; 72(17):4185-92. PubMed ID: 10994982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free, needle-type biosensor for continuous glucose monitoring based on competitive binding.
    Paek SH; Cho IH; Kim DH; Jeon JW; Lim GS; Paek SH
    Biosens Bioelectron; 2013 Feb; 40(1):38-44. PubMed ID: 22705406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A miniature glucose sensor, implantable in the blood stream.
    Kondo T; Ito K; Ohkura K; Ito K; Ikeda S
    Diabetes Care; 1982; 5(3):218-21. PubMed ID: 7172987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Problems in adapting a glucose-oxidase electrochemical sensor into an implantable glucose-sensing device.
    Thévenot DR
    Diabetes Care; 1982; 5(3):184-9. PubMed ID: 7172981
    [No Abstract]   [Full Text] [Related]  

  • 11. Progress toward a potentially implantable, enzyme-based glucose sensor.
    Gough DA; Leypoldt JK; Armour JC
    Diabetes Care; 1982; 5(3):190-8. PubMed ID: 7172982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thirty-fifth anniversary of the optical affinity sensor for glucose: a personal retrospective.
    Schultz JS
    J Diabetes Sci Technol; 2015 Jan; 9(1):153-5. PubMed ID: 25269660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implanted electroenzymatic glucose sensors.
    Clark LC; Duggan CA
    Diabetes Care; 1982; 5(3):174-80. PubMed ID: 7172979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term stability of electroenzymatic glucose sensors implanted in mice. An update.
    Clark LC; Spokane RB; Homan MM; Sudan R; Miller M
    ASAIO Trans; 1988; 34(3):259-65. PubMed ID: 3196517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence resonance energy transfer-based near-infrared fluorescence sensor for glucose monitoring.
    Ballerstadt R; Gowda A; McNichols R
    Diabetes Technol Ther; 2004 Apr; 6(2):191-200. PubMed ID: 15117585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single walled carbon nanotubes as reporters for the optical detection of glucose.
    Barone PW; Strano MS
    J Diabetes Sci Technol; 2009 Mar; 3(2):242-52. PubMed ID: 20144355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-infrared fluorescence lifetime assay for serum glucose based on allophycocyanin-labeled concanavalin A.
    McCartney LJ; Pickup JC; Rolinski OJ; Birch DJ
    Anal Biochem; 2001 May; 292(2):216-21. PubMed ID: 11355853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanostructured disposable impedimetric sensors as tools for specific biomolecular interactions: sensitive recognition of concanavalin A.
    Loaiza OA; Lamas-Ardisana PJ; Jubete E; Ochoteco E; Loinaz I; Cabañero G; García I; Penadés S
    Anal Chem; 2011 Apr; 83(8):2987-95. PubMed ID: 21417434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fiber-coupled fluorescence affinity sensor for 3-day in vivo glucose sensing.
    Ballerstadt R; Evans C; Gowda A; McNichols R
    J Diabetes Sci Technol; 2007 May; 1(3):384-93. PubMed ID: 19885094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recording of subcutaneous glucose dynamics by a viscometric affinity sensor.
    Beyer U; Schäfer D; Thomas A; Aulich H; Haueter U; Reihl B; Ehwald R
    Diabetologia; 2001 Apr; 44(4):416-23. PubMed ID: 11357470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.