BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 6184340)

  • 1. [Romanowsky dyes and Romanowsky-Giemsa effect. 2. Eosin Y, erythrosin B, tetrachlorofluorescein, spectroscopic characterization of pure dyes, association of eosin Y].
    Zipfel E; Grezes JR; Seiffert W; Zimmermann HW
    Histochemistry; 1982; 75(4):539-55. PubMed ID: 6184340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Romanowsky dyes and romanowsky-Giemsa effect. 1. Azure B, purity and content of dye samples, association (author's transl)].
    Zipfel E; Grezes JR; Seiffert W; Zimmermann HW
    Histochemistry; 1981; 72(2):279-90. PubMed ID: 6168611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Romanowsky dyes and the Romanowsky-Giemsa effect. 3. Microspectrophotometric studies of Romanowsky-Giemsa staining. Spectroscopic evidence of a DNA-azure B-eosin Y complex producing the Romanowsky-Giemsa effect].
    Zipfel E; Grezes JR; Naujok A; Seiffert W; Wittekind DH; Zimmermann HW
    Histochemistry; 1984; 81(4):337-51. PubMed ID: 6210276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Romanowsky dyes and Romanowsky-Giemsa effect. 5. Structural investigations of the purple DNA-AB-EY dye complexes of Romanowsky-Giemsa staining.
    Friedrich K; Seiffert W; Zimmermann HW
    Histochemistry; 1990; 93(3):247-56. PubMed ID: 1690190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Romanowsky dyes and the Romanowsky-Giemsa effect. 4. Binding of azure B to DNA].
    Müller-Walz R; Zimmermann HW
    Histochemistry; 1987; 87(2):157-22. PubMed ID: 2442126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the nature of Romanowsky-Giemsa staining and the Romanowsky-Giemsa effect. I. Model experiments on the specificity of azure B-eosin Y stain as compared with other thiazine dye-eosin Y combinations.
    Wittekind DH; Gehring T
    Histochem J; 1985 Mar; 17(3):263-89. PubMed ID: 2411682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of dye binding in the protein assay using eosin dyes.
    Waheed AA; Rao KS; Gupta PD
    Anal Biochem; 2000 Dec; 287(1):73-9. PubMed ID: 11078585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Hydrophobic acridine dyes for fluorescence staining of mitochondria in living cells. 1. Thermodynamic and spectroscopic properties of 10-n-alkylacridine orange chlorides].
    Septinus M; Seiffert W; Zimmermann HW
    Histochemistry; 1983; 79(3):443-56. PubMed ID: 6197394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral study of fluorone dyes adsorption on chitosan-based polyelectrolyte complexes.
    Slyusareva E; Gerasimova M; Plotnikov CA; Sizykh A
    J Colloid Interface Sci; 2014 Mar; 417():80-7. PubMed ID: 24407662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the nature of Romanowsky dyes and the Romanowsky-Giemsa effect.
    Wittekind D
    Clin Lab Haematol; 1979; 1(4):247-62. PubMed ID: 94558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of cationic thiazine dyes on eosin Y-uptake of red blood cells in Romanowsky-Giemsa type stains.
    Schulte E; Wittekind D; Kretschmer V
    Acta Histochem Suppl; 1989; 37():139-47. PubMed ID: 2475882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How Romanowsky stains work and why they remain valuable - including a proposed universal Romanowsky staining mechanism and a rational troubleshooting scheme.
    Horobin RW
    Biotech Histochem; 2011 Feb; 86(1):36-51. PubMed ID: 21235292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorescence of protein-bound eosin and erythrosin. A possible probe for measurements of slow rotational mobility.
    Garland PB; Moore CH
    Biochem J; 1979 Dec; 183(3):561-72. PubMed ID: 94265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability study of Azure B, Eosin Y and commercial Romanowsky Giemsa stock solutions using high performance liquid chromatography.
    Van Liedekerke BM; Nelis HJ; Wittekind DH; De Leenheer AP
    Histochem J; 1991 Apr; 23(4):189-95. PubMed ID: 1721046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pKa determinations of xanthene derivates in aqueous solutions by multivariate analysis applied to UV-Vis spectrophotometric data.
    Batistela VR; Pellosi DS; de Souza FD; da Costa WF; de Oliveira Santin SM; de Souza VR; Caetano W; de Oliveira HP; Scarminio IS; Hioka N
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Sep; 79(5):889-97. PubMed ID: 21550841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological decolorization of xanthene dyes by anaerobic granular biomass.
    Apostol LC; Pereira L; Pereira R; Gavrilescu M; Alves MM
    Biodegradation; 2012 Sep; 23(5):725-37. PubMed ID: 22437968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation of acidic dye Eosin Y by the solar photo-Fenton processes.
    Zheng H; Pan Y; Xiang X
    J Hazard Mater; 2007 Mar; 141(3):457-64. PubMed ID: 17250960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation, characterization and adsorption properties of chitosan nanoparticles for eosin Y as a model anionic dye.
    Du WL; Xu ZR; Han XY; Xu YL; Miao ZG
    J Hazard Mater; 2008 May; 153(1-2):152-6. PubMed ID: 17890000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental effects on the aggregation of some xanthene dyes used in lasers.
    De S; Das S; Girigoswami A
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Jun; 61(8):1821-33. PubMed ID: 15863053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on the fluorescence resonance energy transfer between CdS quantum dots and Eosin Y.
    Yan Z; Zhang Z; Yu Y; Chen J
    Luminescence; 2015 Mar; 30(2):155-8. PubMed ID: 24888328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.