These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 6187487)

  • 1. Limited proteolysis of cytokeratin a by an endogeneous protease: removal of positively charged terminal sequences.
    Schiller DL; Franke WW
    Cell Biol Int Rep; 1983 Jan; 7(1):3. PubMed ID: 6187487
    [No Abstract]   [Full Text] [Related]  

  • 2. Reverse Zymography: Overview and Pitfalls.
    Sharma K; Bhattacharyya D
    Methods Mol Biol; 2017; 1626():125-132. PubMed ID: 28608205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HIV-1 reverse transcriptase: crystallization and analysis of domain structure by limited proteolysis.
    Lowe DM; Aitken A; Bradley C; Darby GK; Larder BA; Powell KL; Purifoy DJ; Tisdale M; Stammers DK
    Biochemistry; 1988 Dec; 27(25):8884-9. PubMed ID: 2466481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel fibrin(ogen)olytic trypsin-like protease from Chinese oak silkworm (Antheraea pernyi): purification and characterization.
    Geng P; Lin L; Li Y; Fan Q; Wang N; Song L; Li W
    Biochem Biophys Res Commun; 2014 Feb; 445(1):64-70. PubMed ID: 24491553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Limited proteolysis of silkworm antitrypsin by several proteinases.
    Sasaki T; Kohara A; Takagi H; Shimidzu T
    Agric Biol Chem; 1990 Jan; 54(1):131-7. PubMed ID: 1368515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteolytic activation of the influenza virus hemagglutinin: The structure of the cleavage site and the enzymes involved in cleavage.
    Garten W; Bosch FX; Linder D; Rott R; Klenk HD
    Virology; 1981 Dec; 115(2):361-74. PubMed ID: 7032055
    [No Abstract]   [Full Text] [Related]  

  • 7. Rapid Protein Digestion and Purification with Membranes Attached to Pipet Tips.
    Ning W; Bruening ML
    Anal Chem; 2015 Dec; 87(24):11984-9. PubMed ID: 26629589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of two types of keratin polypeptides within the acidic cytokeratin subfamily I.
    Jorcano JL; Rieger M; Franz JK; Schiller DL; Moll R; Franke WW
    J Mol Biol; 1984 Oct; 179(2):257-81. PubMed ID: 6209405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protease susceptibility of human A influenza virus polypeptides.
    Sabina LR; Ewasyshyn ME; Hills R; McLeod DA
    Acta Virol; 1981 May; 25(3):138-43. PubMed ID: 6115561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cystic fibrosis alpha 2-macroglobulin protease interaction in vitro.
    Parsons M; Romeo G
    Clin Chim Acta; 1980 Jan; 100(3):215-24. PubMed ID: 6153299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining Protease Substrates Within a Complex Protein Background Using the PROtein TOpography and Migration Analysis Platform (PROTOMAP).
    Fuhrman-Luck RA; Silva LM; Hastie ML; Gorman JJ; Clements JA
    Methods Mol Biol; 2017; 1574():145-170. PubMed ID: 28315249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The presumption of proteolytic enzymes related to the formation of intermediates during the terminal differentiation.
    Katagata Y; Aso K
    FEBS Lett; 1988 Mar; 230(1-2):151-4. PubMed ID: 2450782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of steroid- and DNA-binding domains of the calf uterine androgen receptor by limited proteolysis.
    de Boer W; Bolt J; Kuiper GG; Brinkmann AO; Mulder E
    J Steroid Biochem; 1987 Jul; 28(1):9-19. PubMed ID: 3302538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple assay for proteolysis of IGFBP-3.
    Lamson G; Giudice LC; Rosenfeld RG
    J Clin Endocrinol Metab; 1991 Jun; 72(6):1391-3. PubMed ID: 1709177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteolytic modification of acidic and basic keratins during terminal differentiation of mouse and human epidermis.
    Bowden PE; Quinlan RA; Breitkreutz D; Fusenig NE
    Eur J Biochem; 1984 Jul; 142(1):29-36. PubMed ID: 6204871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence that human ceruloplasmin molecule consists of homologous parts.
    Prozorovski VN; Rashkovetski LG; Shavlovski MM; Vasiliev VB; Neifakh SA
    Int J Pept Protein Res; 1982 Jan; 19(1):40-53. PubMed ID: 6749727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alpha 2-macroglobulin-protease reactions: relationship of covalent bond formation, methylamine reactivity, and specific proteolysis.
    Wang D; Wu K; Feinman RD
    Arch Biochem Biophys; 1981 Oct; 211(1):500-6. PubMed ID: 6171201
    [No Abstract]   [Full Text] [Related]  

  • 18. Sequence analysis of peptide fragments from the intrinsic membrane protein of calf lens fibers MP26 and its natural maturation product MP22.
    Do Ngoc L; Paroutaud P; Dunia I; Benedetti EL; Hoebeke J
    FEBS Lett; 1985 Feb; 181(1):74-8. PubMed ID: 3882455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of linker regions and domain borders of the transcription activator protein NtrC from Escherichia coli by limited proteolysis, in-gel digestion, and mass spectrometry.
    Bantscheff M; Weiss V; Glocker MO
    Biochemistry; 1999 Aug; 38(34):11012-20. PubMed ID: 10460156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rearrangement of terminal amino acid residues in peptides by protease-catalyzed intramolecular transpeptidation.
    Fodor S; Zhang Z
    Anal Biochem; 2006 Sep; 356(2):282-90. PubMed ID: 16859627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.