These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 6187743)
61. The G222D mutation in elongation factor Tu inhibits the codon-induced conformational changes leading to GTPase activation on the ribosome. Vorstenbosch E; Pape T; Rodnina MV; Kraal B; Wintermeyer W EMBO J; 1996 Dec; 15(23):6766-74. PubMed ID: 8978702 [TBL] [Abstract][Full Text] [Related]
62. Direct determination of the association constant between elongation factor Tu X GTP and aminoacyl-tRNA using fluorescence. Abrahamson JK; Laue TM; Miller DL; Johnson AE Biochemistry; 1985 Jan; 24(3):692-700. PubMed ID: 3888260 [TBL] [Abstract][Full Text] [Related]
63. [Mechanism of codon-anticodon interaction in ribosomes. Interaction of aminoacyl-tRNA with 70S ribosomes in the absence of elongation factor EF-Tu and GTP]. Kemkhadze KSh; Odintsov VB; Makhno VI; Semenkov IuP; Kirillov SV Mol Biol (Mosk); 1981; 15(4):779-89. PubMed ID: 6912382 [TBL] [Abstract][Full Text] [Related]
64. Binding of reticulocyte elongation factor 1 to ribosomes and nucleic acids. Kolb AJ; Redfield B; Twardowski T; Weissbach H Biochim Biophys Acta; 1978 Jul; 519(2):398-405. PubMed ID: 248283 [TBL] [Abstract][Full Text] [Related]
65. The GTPase activity of elongation factor Tu and the 3'-terminal end of aminoacyl-tRNA. Parlato G; Guesnet J; Crechet JB; Parmeggiani A FEBS Lett; 1981 Mar; 125(2):257-60. PubMed ID: 6112171 [No Abstract] [Full Text] [Related]
66. Probing the reactivity of the GTP- and GDP-bound conformations of elongation factor Tu in complex with the antibiotic GE2270 A. Anborgh PH; Parmeggiani A J Biol Chem; 1993 Nov; 268(33):24622-8. PubMed ID: 8227020 [TBL] [Abstract][Full Text] [Related]
67. Regulation of elongation factor G GTPase activity by the ribosomal state. The effects of initiation factors and differentially bound tRNA, aminoacyl-tRNA, and peptidyl-tRNA. Voigt J; Nagel K J Biol Chem; 1993 Jan; 268(1):100-6. PubMed ID: 8416917 [TBL] [Abstract][Full Text] [Related]
68. Synergism between the GTPase activities of EF-Tu.GTP and EF-G.GTP on empty ribosomes. Elongation factors as stimulators of the ribosomal oscillation between two conformations. Mesters JR; Potapov AP; de Graaf JM; Kraal B J Mol Biol; 1994 Oct; 242(5):644-54. PubMed ID: 7932721 [TBL] [Abstract][Full Text] [Related]
69. Recognition of the universally conserved 3'-CCA end of tRNA by elongation factor EF-Tu. Liu JC; Liu M; Horowitz J RNA; 1998 Jun; 4(6):639-46. PubMed ID: 9622123 [TBL] [Abstract][Full Text] [Related]
70. The effect of aminoacyl- or peptidyl-tRNA at the A-site on the arrangement of deacylated tRNA at the ribosomal P-site. Babkina GT; Bausk EV; Graifer DM; Karpova GG; Matasova NB FEBS Lett; 1984 May; 170(2):290-4. PubMed ID: 6202554 [TBL] [Abstract][Full Text] [Related]
71. Regulation of the activity of eukaryotic peptide elongation factor 1 by autocatalytic phosphorylation. Tuhácková Z; Ullrichová J; Hradec J Eur J Biochem; 1985 Jan; 146(1):161-6. PubMed ID: 3843959 [TBL] [Abstract][Full Text] [Related]
72. Two GTPs are consumed on EF-Tu per peptide bond in poly(Phe) synthesis, in spite of switching stoichiometry of the EF-Tu.aminoacyl-tRNA complex with temperature. Dinçbaş V; Bilgin N; Scoble J; Ehrenberg M FEBS Lett; 1995 Jan; 357(1):19-22. PubMed ID: 8001671 [TBL] [Abstract][Full Text] [Related]
73. Aminoacyl transfer ribonucleic acid binding site of the bacterial elongation factor Tu. Pingoud A; Urbanke C Biochemistry; 1980 May; 19(10):2108-12. PubMed ID: 6990972 [TBL] [Abstract][Full Text] [Related]
74. Kirromycin drastically reduces the affinity of Escherichia coli elongation factor Tu for aminoacyl-tRNA. Abrahams JP; van Raaij MJ; Ott G; Kraal B; Bosch L Biochemistry; 1991 Jul; 30(27):6705-10. PubMed ID: 2065055 [TBL] [Abstract][Full Text] [Related]
75. Histidine-118 of elongation factor Tu: its role in aminoacyl-tRNA binding and regulation of the GTPase activity. Jonák J; Anborgh PH; Parmeggiani A FEBS Lett; 1994 Apr; 343(1):94-8. PubMed ID: 8163025 [TBL] [Abstract][Full Text] [Related]
76. Initial binding of the elongation factor Tu.GTP.aminoacyl-tRNA complex preceding codon recognition on the ribosome. Rodnina MV; Pape T; Fricke R; Kuhn L; Wintermeyer W J Biol Chem; 1996 Jan; 271(2):646-52. PubMed ID: 8557669 [TBL] [Abstract][Full Text] [Related]
77. Interaction of cinnamyl-tRNAPhe with Escherichia coli elongation factor Tu. Derwenskus KH; Sprinzl M FEBS Lett; 1983 Jan; 151(1):143-7. PubMed ID: 6337872 [TBL] [Abstract][Full Text] [Related]
78. The influence of tRNA located at the P-site on the turnover of EF-Tu.GTP on ribosomes. Abrahams JP; Acampo JJ; Kraal B; Bosch L Biochimie; 1991; 73(7-8):1089-92. PubMed ID: 1742352 [TBL] [Abstract][Full Text] [Related]
79. Affinity labeling at the A-site of Escherichia coli ribosomes by a non-hydrolyzable gamma-amide analog of GTP. Babkina GT; Jonák J; Karpova GG; Knorre DG; Rychlík I; Vladimirov SN Biochimie; 1988 May; 70(5):597-603. PubMed ID: 3139078 [TBL] [Abstract][Full Text] [Related]
80. Enzymic binding of aminoacyl-tRNA to Escherichia coli ribosomes using modified tRNA species and tRNA fragments. Wagner T; Sprinzl M Methods Enzymol; 1979; 60():615-28. PubMed ID: 379537 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]