These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 6188488)
1. Complete nuclear magnetic resonance signal assignments and initial structural studies of [13C]methyl-enriched yeast transfer ribonucleic acid. Agris PF; Kovacs SA; Smith C; Kopper RA; Schmidt PG Biochemistry; 1983 Mar; 22(6):1402-8. PubMed ID: 6188488 [No Abstract] [Full Text] [Related]
2. Structural dynamics of transfer ribonucleic acid: carbon-13 nuclear magnetic resonance of [13C]methyl-enriched pure species. Kopper RA; Schmidt PG; Agris PF Biochemistry; 1983 Mar; 22(6):1396-401. PubMed ID: 6188487 [No Abstract] [Full Text] [Related]
3. Complete nuclear magnetic resonance signal assignments and initial structural studies of [13C]methyl-enriched transfer ribonucleic acid. Tompson JG; Hayashi F; Paukstelis JV; Loeppky RN; Agris PF Biochemistry; 1979 May; 18(10):2079-85. PubMed ID: 373800 [No Abstract] [Full Text] [Related]
4. Nuclear magnetic resonance signal assignments of purified [13C]methyl-enriched yeast phenylalanine transfer ribonucleic acid. Smith C; Schmidt PG; Petsch J; Agris PF Biochemistry; 1985 Mar; 24(6):1434-40. PubMed ID: 3886007 [TBL] [Abstract][Full Text] [Related]
5. Internal dynamics of transfer ribonucleic acid determined by nuclear magnetic resonance of carbon-13-enriched ribose carbon 1. Schmidt PG; Playl T; Agris PF Biochemistry; 1983 Mar; 22(6):1408-15. PubMed ID: 6188489 [TBL] [Abstract][Full Text] [Related]
6. Optically detected magnetic resonance of Escherichia coli glutamic acid specific transfer ribonucleic acid and its anticodon-anticodon complex with yeast phenylalanine-specific transfer ribonucleic acid. Taherian MR; Luk KF; Maki AH Biochemistry; 1984 Dec; 23(26):6614-8. PubMed ID: 6085008 [TBL] [Abstract][Full Text] [Related]
7. Chemical modification of ribonucleic acid. A direct study by carbon-13 nuclear magnetic resonance spectroscopy. Chang C; Lee CG Biochemistry; 1981 Apr; 20(9):2657-61. PubMed ID: 7236629 [TBL] [Abstract][Full Text] [Related]
8. Transfer RNA contains sites of localized positive charge: carbon NMR studies of [13C]methyl-enriched Escherichia coli and yeast tRNAPhe. Agris PF; Sierzputowska-Gracz H; Smith C Biochemistry; 1986 Sep; 25(18):5126-31. PubMed ID: 3533144 [TBL] [Abstract][Full Text] [Related]
9. Observation of resonances from some minor bases in the natural-abundance carbon-13 nuclear magnetic resonance spectrum of unfractionated yeast transfer ribonucleic acid. Evidence for fast internal motion of the dihydrouracil rings. Komoroski RA; Allerhand A Biochemistry; 1974 Jan; 13(2):369-72. PubMed ID: 4589310 [No Abstract] [Full Text] [Related]
10. Structure of transfer RNA by carbon NMR: resolution of single carbon resonances from 13C-enriched, purified species. Agris PF; Schmidt PG Nucleic Acids Res; 1980 May; 8(9):2085-91. PubMed ID: 6159600 [TBL] [Abstract][Full Text] [Related]
11. A rapid and specific assay for sugar methylation in ribonucleic acid. Baskin F; Dekker CA J Biol Chem; 1967 Nov; 242(22):5447-9. PubMed ID: 4863753 [No Abstract] [Full Text] [Related]
12. Assignment of imino proton spectra of yeast phenylalanine transfer ribonucleic acid. Roy S; Redfield AG Biochemistry; 1983 Mar; 22(6):1386-90. PubMed ID: 6301547 [TBL] [Abstract][Full Text] [Related]
13. Kethoxal inactivation of three transfer ribonucleic acids chargeable by yeast phenylalanyl transfer ribonucleic acid synthetase. Litt M; Greenspan CM Biochemistry; 1972 Apr; 11(8):1437-42. PubMed ID: 4553754 [No Abstract] [Full Text] [Related]
14. Incorporation of 5-fluorouracil into the transfer RNA of Escherichia coli K12W6 and its effect on the methylation of uracil. Baliga BS; Hendler S; Srinivasan PR Biochim Biophys Acta; 1969 Jul; 186(1):25-32. PubMed ID: 4897215 [No Abstract] [Full Text] [Related]
15. High-resolution phosphorus nuclear magnetic resonance spectroscopy of transfer ribonucleic acids: multiple conformations in the anticodon loop. Gorenstein DG; Goldfield EM Biochemistry; 1982 Nov; 21(23):5839-49. PubMed ID: 6185140 [TBL] [Abstract][Full Text] [Related]
16. Behavior of transfer ribonucleic acids on polyacrylamide gel columns. Egan BZ; Rhear RW; Kelmers AD Biochim Biophys Acta; 1969 Jan; 174(1):23-31. PubMed ID: 4885695 [No Abstract] [Full Text] [Related]
17. Studies on the thionucleotides in transfer ribonucleic acid. Addition of N-ethylmaleimide and formation of mixed disulfides with thiol compounds. Carbon J; David H Biochemistry; 1968 Nov; 7(11):3851-8. PubMed ID: 4881059 [No Abstract] [Full Text] [Related]
18. Structural properties of 5-fluorouracil-containing transfer ribonucleic acids from Escherichia coli. Kaiser II Biochemistry; 1971 Apr; 10(9):1540-5. PubMed ID: 4931747 [No Abstract] [Full Text] [Related]
19. Effect of deamination of the terminal adenosine of transfer ribonucleic acid on its amino acid acceptor ability. Li C; Su JC Biochem Biophys Res Commun; 1967 Sep; 28(6):1068-72. PubMed ID: 4863606 [No Abstract] [Full Text] [Related]
20. Chemical modification of transfer ribonucleic acid species. Thallium(3)-mediated iodination of yeast formylatable methionine transfer ribonucleic acid. Schmidt FJ; Omilianowski DR; Bock RM Biochemistry; 1973 Nov; 12(24):4980-3. PubMed ID: 4586827 [No Abstract] [Full Text] [Related] [Next] [New Search]