These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 618850)

  • 1. Phosphonate utilization by bacteria.
    Cook AM; Daughton CG; Alexander M
    J Bacteriol; 1978 Jan; 133(1):85-90. PubMed ID: 618850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorus-containing pesticide breakdown products: quantitative utilization as phosphorus sources by bacteria.
    Cook AM; Daughton CG; Alexander M
    Appl Environ Microbiol; 1978 Nov; 36(5):668-72. PubMed ID: 727784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptomic-Guided Phosphonate Utilization Analysis Unveils Evidence of Clathrin-Mediated Endocytosis and Phospholipid Synthesis in the Model Diatom,
    Shu H; You Y; Wang H; Wang J; Li L; Ma J; Lin X
    mSystems; 2022 Dec; 7(6):e0056322. PubMed ID: 36317887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphate starvation-independent 2-aminoethylphosphonic acid biodegradation in a newly isolated strain of Pseudomonas putida, NG2.
    Ternan NG; Quinn JP
    Syst Appl Microbiol; 1998 Aug; 21(3):346-52. PubMed ID: 9841125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphonate utilization by bacterial cultures and enrichments from environmental samples.
    Schowanek D; Verstraete W
    Appl Environ Microbiol; 1990 Apr; 56(4):895-903. PubMed ID: 2339877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ability of soil-borne fungi to degrade organophosphonate carbon-to-phosphorus bonds.
    Krzyśko-Lupicka T; Strof W; Kubś K; Skorupa M; Wieczorek P; Lejczak B; Kafarski P
    Appl Microbiol Biotechnol; 1997 Oct; 48(4):549-52. PubMed ID: 9390463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphonate utilization by bacteria in the presence of alternative phosphorus sources.
    Schowanek D; Verstraete W
    Biodegradation; 1990; 1(1):43-53. PubMed ID: 1368141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alkylphosphonates as unique compounds in the metabolism of the schistosomal vector Biomphalaria glabrata.
    Miceli MV; Henderson TO; Myers TC
    Am J Trop Med Hyg; 1987 Mar; 36(2):355-60. PubMed ID: 3826495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Occurrence of 2-aminoethylphosphonic acid in feeds, ruminal bacteria and duodenal digesta from defaunated sheep.
    Ankrah P; Loerch SC; Dehority BA
    J Anim Sci; 1989 Apr; 67(4):1061-9. PubMed ID: 2715111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2-Aminoethylphosphonic acid metabolism in the rat.
    Joseph JC; Henderson TO
    Lipids; 1977 Jan; 12(1):75-84. PubMed ID: 834125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The predominance of nucleotidyl activation in bacterial phosphonate biosynthesis.
    Rice K; Batul K; Whiteside J; Kelso J; Papinski M; Schmidt E; Pratasouskaya A; Wang D; Sullivan R; Bartlett C; Weadge JT; Van der Kamp MW; Moreno-Hagelsieb G; Suits MD; Horsman GP
    Nat Commun; 2019 Aug; 10(1):3698. PubMed ID: 31420548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolism of 2-aminoethylphosphonic acid during embryonic development of the schistosomal vector Biomphalaria glabrata.
    Meneses P; Glonek T; Henderson TO
    Comp Biochem Physiol B; 1987; 88(3):969-75. PubMed ID: 3427925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organophosphonate utilization by the wild-type strain of Pseudomonas fluorescens.
    Zboińska E; Lejczak B; Kafarski P
    Appl Environ Microbiol; 1992 Sep; 58(9):2993-9. PubMed ID: 1444412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial growth on aminoalkylphosphonic acids.
    Harkness DR
    J Bacteriol; 1966 Sep; 92(3):623-7. PubMed ID: 5922537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [2-Amino-ethylphosphonic acid transport in Pseudomonas aeruginosa].
    Lacoste AM; Cassaigne A; Tamari M; Neuzil E
    Biochimie; 1976; 58(6):703-12. PubMed ID: 821545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of 2-aminoethylarsonic acid in Pseudomonas aeruginosa.
    Lacoste AM; Dumora C; Ali BR; Neuzil E; Dixon HB
    J Gen Microbiol; 1992 Jun; 138(6):1283-7. PubMed ID: 1527499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphate and soil binding: factors limiting bacterial degradation of ionic phosphorus-containing pesticide metabolites.
    Daughton CG; Cook AM; Alexander M
    Appl Environ Microbiol; 1979 Mar; 37(3):605-9. PubMed ID: 453832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphonoglycoprotein from Metridium senile--heterogeneity of glycoproteins containing aminoethylphosphonic acid.
    Hurley JC; Bunde TA; Dell JC; Kirkpatrick DS; Bishop SH
    Comp Biochem Physiol B; 1977; 58(3):253-9. PubMed ID: 45526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Research on the catabolism of phosphonic acids: biodegradation of the C-P bond by Pseudomonas aeruginosa].
    Cassaigne A; Lacoste AM; Neuzil E
    C R Acad Hebd Seances Acad Sci D; 1976 May; 282(17):1637-9. PubMed ID: 820467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organophosphonates utilization by soil strains of Ochrobactrum anthropi and Achromobacter sp.
    Ermakova IT; Shushkova TV; Sviridov AV; Zelenkova NF; Vinokurova NG; Baskunov BP; Leontievsky AA
    Arch Microbiol; 2017 Jul; 199(5):665-675. PubMed ID: 28184965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.