These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 6188503)

  • 1. Electrostatic modeling of ion pores. II. Effects attributable to the membrane dipole potential.
    Jordan PC
    Biophys J; 1983 Feb; 41(2):189-95. PubMed ID: 6188503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local Anesthetics Affect Gramicidin A Channels via Membrane Electrostatic Potentials.
    Efimova SS; Zakharova AA; Schagina LV; Ostroumova OS
    J Membr Biol; 2016 Dec; 249(6):781-787. PubMed ID: 27592116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of pore structure on energy barriers and applied voltage profiles. I. Symmetrical channels.
    Jordan PC
    Biophys J; 1984 Jun; 45(6):1091-100. PubMed ID: 6331539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modifiers of membrane dipole potentials as tools for investigating ion channel formation and functioning.
    Ostroumova OS; Efimova SS; Malev VV
    Int Rev Cell Mol Biol; 2015; 315():245-97. PubMed ID: 25708465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of ions and water in gramicidin A channels: streaming potentials across lipid bilayer membranes.
    Rosenberg PA; Finkelstein A
    J Gen Physiol; 1978 Sep; 72(3):327-40. PubMed ID: 81264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane dipole potential modulates proton conductance through gramicidin channel: movement of negative ionic defects inside the channel.
    Rokitskaya TI; Kotova EA; Antonenko YN
    Biophys J; 2002 Feb; 82(2):865-73. PubMed ID: 11806928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large unselective pore in lipid bilayer membrane formed by positively charged peptides containing a sequence of gramicidin A.
    Antonenko YN; Stoilova TB; Kovalchuk SI; Egorova NS; Pashkovskaya AA; Sobko AA; Kotova EA; Sychev SV; Surovoy AY
    FEBS Lett; 2005 Sep; 579(23):5247-52. PubMed ID: 16165129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrostatic modeling of ion pores. Energy barriers and electric field profiles.
    Jordan PC
    Biophys J; 1982 Aug; 39(2):157-64. PubMed ID: 6288132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noncontact dipole effects on channel permeation. V. Computed potentials for fluorinated gramicidin.
    Anderson DG; Shirts RB; Cross TA; Busath DD
    Biophys J; 2001 Sep; 81(3):1255-64. PubMed ID: 11509342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of the dielectric barrier in narrow biological channels: a novel composite approach to modeling single-channel currents.
    Mamonov AB; Coalson RD; Nitzan A; Kurnikova MG
    Biophys J; 2003 Jun; 84(6):3646-61. PubMed ID: 12770873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatic interactions in gramicidin channels. Three-dielectric model.
    Martínez G; Sancho M
    Eur Biophys J; 1993; 22(4):301-7. PubMed ID: 7504621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water permeability of gramicidin A-treated lipid bilayer membranes.
    Rosenberg PA; Finkelstein A
    J Gen Physiol; 1978 Sep; 72(3):341-50. PubMed ID: 81265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetry of the gramicidin channel in bilayers of asymmetric lipid composition: II. Voltage dependence of dimerization.
    Fröhlich O
    J Membr Biol; 1979 Aug; 48(4):385-401. PubMed ID: 90729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrostatic calculations for an ion channel. I. Energy and potential profiles and interactions between ions.
    Levitt DG
    Biophys J; 1978 May; 22(2):209-19. PubMed ID: 656542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetics of ion permeation through membrane channels. Solvation of Na+ by gramicidin A.
    Aqvist J; Warshel A
    Biophys J; 1989 Jul; 56(1):171-82. PubMed ID: 2473789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion movement through gramicidin A channels. On the importance of the aqueous diffusion resistance and ion-water interactions.
    Andersen OS; Procopio J
    Acta Physiol Scand Suppl; 1980; 481():27-35. PubMed ID: 6159776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voltage-dependent formation of gramicidin channels in lipid bilayers.
    Sandblom J; Galvanovskis J; Jilderos B
    Biophys J; 2001 Aug; 81(2):827-37. PubMed ID: 11463628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the dipole potential of a bilayer lipid membrane on gramicidin channel dissociation kinetics.
    Rokitskaya TI; Antonenko YN; Kotova EA
    Biophys J; 1997 Aug; 73(2):850-4. PubMed ID: 9251801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy barriers for passage of ions through channels. Exact solution of two electrostatic problems.
    Jordan PC
    Biophys Chem; 1981 Jun; 13(3):203-12. PubMed ID: 6165413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How electrolyte shielding influences the electrical potential in transmembrane ion channels.
    Jordan PC; Bacquet RJ; McCammon JA; Tran P
    Biophys J; 1989 Jun; 55(6):1041-52. PubMed ID: 2475181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.