These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 6188927)
41. Circular dichroism analyses of tRNA X protein interactions. Yokoyama S; Haruki M; Hara-Yokoyama M; Miyazawa T Nucleic Acids Symp Ser; 1986; (17):199-201. PubMed ID: 2882491 [TBL] [Abstract][Full Text] [Related]
42. A calorimetric study of the thermal transitions of three specific transfer ribonucleic acids. Brandts JF; Jackson WM; Ting TY Biochemistry; 1974 Aug; 13(17):3595-600. PubMed ID: 4602947 [No Abstract] [Full Text] [Related]
43. Aminoacyl-tRNA synthetases from an extreme thermophile, Thermus thermophilus HB8. Kohda D; Hara M; Yokoyama S; Miyazawa T Nucleic Acids Symp Ser; 1983; (12):153-4. PubMed ID: 6664850 [TBL] [Abstract][Full Text] [Related]
44. Semi-empirical molecular orbital methods including dispersion corrections for the accurate prediction of the full range of intermolecular interactions in biomolecules. McNamara JP; Hillier IH Phys Chem Chem Phys; 2007 May; 9(19):2362-70. PubMed ID: 17492099 [TBL] [Abstract][Full Text] [Related]
45. Purification, catalytic properties, and thermal stability of threo-Ds-3-isopropylmalate dehydrogenase coded by leuB gene from an extreme thermophile, Thermus thermophilus strain HB8. Yamada T; Akutsu N; Miyazaki K; Kakinuma K; Yoshida M; Oshima T J Biochem; 1990 Sep; 108(3):449-56. PubMed ID: 2277037 [TBL] [Abstract][Full Text] [Related]
46. Thermostable valyl-tRNA, isoleucyl-tRNA and methionyl-tRNA synthetases from an extreme thermophile Thermus thermophilus HB8: protein structure and Zn2+ binding. Kohda D; Yokoyama S; Miyazawa T FEBS Lett; 1984 Aug; 174(1):20-3. PubMed ID: 6468656 [TBL] [Abstract][Full Text] [Related]
47. Sequence-dependent base-stacking stabilities guide tRNA folding energy landscapes. Li R; Ge HW; Cho SS J Phys Chem B; 2013 Oct; 117(42):12943-52. PubMed ID: 23841777 [TBL] [Abstract][Full Text] [Related]
48. Purification and thermal stability of several amino acid-specific tRNAs from an extreme thermophile, Thermus thermophilus HB8. Watanabe K; Oshima T; Iijima K; Yamaizumi Z; Nishimura S J Biochem; 1980 Jan; 87(1):1-13. PubMed ID: 6987208 [TBL] [Abstract][Full Text] [Related]
49. Hydrogen bonding and stacking of DNA bases: a review of quantum-chemical ab initio studies. Sponer J; Leszczynski J; Hobza P J Biomol Struct Dyn; 1996 Aug; 14(1):117-35. PubMed ID: 8877568 [TBL] [Abstract][Full Text] [Related]
50. Xylose (glucose) isomerase gene from the thermophile Thermus thermophilus: cloning, sequencing, and comparison with other thermostable xylose isomerases. Dekker K; Yamagata H; Sakaguchi K; Udaka S J Bacteriol; 1991 May; 173(10):3078-83. PubMed ID: 2022613 [TBL] [Abstract][Full Text] [Related]
51. Cloning and sequence analysis of tryptophan synthetase genes of an extreme thermophile, Thermus thermophilus HB27: plasmid transfer from replica-plated Escherichia coli recombinant colonies to competent T. thermophilus cells. Koyama Y; Furukawa K J Bacteriol; 1990 Jun; 172(6):3490-5. PubMed ID: 2188962 [TBL] [Abstract][Full Text] [Related]
52. An enhanced thermostability in thermophilic 5-S ribonucleic acids under physiological salt conditions. Nazar RN; Sprott GD; Matheson AT; Van NT Biochim Biophys Acta; 1978 Nov; 521(1):288-94. PubMed ID: 363159 [TBL] [Abstract][Full Text] [Related]
53. Selection of tRNA by the ribosome requires a transition from an open to a closed form. Ogle JM; Murphy FV; Tarry MJ; Ramakrishnan V Cell; 2002 Nov; 111(5):721-32. PubMed ID: 12464183 [TBL] [Abstract][Full Text] [Related]
54. Decay and slowing down of the multiquanta Davydov-like solitons in molecular chains. Ivić Z; Przulj Z; Kostić D Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jun; 61(6 Pt B):6963-70. PubMed ID: 11088389 [TBL] [Abstract][Full Text] [Related]
55. Replacement of ribothymidine by 5-methyl-2-thiouridine in sequence GT psi C in tRNA of an extreme thermophile. Watanabe K; Oshima T; Saneyoshi M; Nishimura S FEBS Lett; 1974 Jul; 43(1):59-63. PubMed ID: 4369142 [No Abstract] [Full Text] [Related]
56. Separation and comparison of 2-thioribothymidine-containing transfer ribonucleic acid and the ribothymidine-containing counterpart from cells of Thermus thermophilus HB 8. Watanabe K; Oshima T; Hansske F; Ohta T Biochemistry; 1983 Jan; 22(1):98-102. PubMed ID: 6830766 [TBL] [Abstract][Full Text] [Related]
57. An ab initio molecular orbital study on the sequence-dependency of DNA conformation: an evaluation of intra- and inter-strand stacking interaction energy. Aida M J Theor Biol; 1988 Feb; 130(3):327-35. PubMed ID: 3419185 [TBL] [Abstract][Full Text] [Related]
58. Binding of cationic and neutral phenanthridine intercalators to a DNA oligomer is controlled by dispersion energy: quantum chemical calculations and molecular mechanics simulations. Kubar T; Hanus M; Ryjácek F; Hobza P Chemistry; 2005 Dec; 12(1):280-90. PubMed ID: 16294358 [TBL] [Abstract][Full Text] [Related]
59. Structural significance of hypermodified nucleic acid base hydroxywybutine (OHyW) which occur at 37th position in the anticodon loop of yeast tRNA(Phe). Kumbhar NM; Kumbhar BV; Sonawane KD J Mol Graph Model; 2012 Sep; 38():174-85. PubMed ID: 23073221 [TBL] [Abstract][Full Text] [Related]
60. Sequences of four tRNA genes adjacent to the tuf2 gene of Thermus thermophilus. Weisshaar M; Ahmadian R; Sprinzl M; Satoh M; Kushiro A; Tomita K Nucleic Acids Res; 1990 Apr; 18(7):1902. PubMed ID: 2336371 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]