BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 6189165)

  • 1. Possible role of oxidized glutathione for the regulation of the myocardial hexose monophosphate shunt.
    Zimmer HG; Bünger R; Koschine H; Steinkopff G; Ibel H
    Adv Myocardiol; 1982; 3():577-84. PubMed ID: 6189165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of isoproterenol and dopamine on the myocardial hexose monophosphate shunt.
    Zimmer HG; Ibel H
    Experientia; 1979 Apr; 35(4):510-2. PubMed ID: 437038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the hexose monophosphate shunt in the myocardium during development of hypertrophy.
    Zimmer HG; Ibel H; Steinkopff G
    Adv Myocardiol; 1980; 1():487-92. PubMed ID: 6156478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid stimulation on the hexose monophosphate shunt in the isolated perfused rat heart: possible involvement of oxidized glutathione.
    Zimmer HG; Bünger R; Koschine H; Steinkopff G
    J Mol Cell Cardiol; 1981 May; 13(5):531-5. PubMed ID: 7265260
    [No Abstract]   [Full Text] [Related]  

  • 5. Significance of the hexose monophosphate shunt in experimentally induced cardiac hypertrophy.
    Zimmer HG; Ibel H; Gerlach E
    Basic Res Cardiol; 1980; 75(1):207-13. PubMed ID: 6155904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple NADPH-producing pathways control glutathione (GSH) content in retina.
    Winkler BS; DeSantis N; Solomon F
    Exp Eye Res; 1986 Nov; 43(5):829-47. PubMed ID: 3803464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular restraint: a new basis for the limitation in response to oxidative stress in human erythrocytes containing low-activity variants of glucose-6-phosphate dehydrogenase.
    Gaetani GD; Parker JC; Kirkman HN
    Proc Natl Acad Sci U S A; 1974 Sep; 71(9):3584-7. PubMed ID: 4154443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An evaluation of regulation of the hexose monophosphate shunt in Escherichia coli.
    Orthner CL; Pizer LI
    J Biol Chem; 1974 Jun; 249(12):3750-5. PubMed ID: 4151946
    [No Abstract]   [Full Text] [Related]  

  • 9. On the role of NADPH and glutathione in the catalytic mechanism of hepatic thyroxine 5'-deiodination.
    Sato T; Maruyama S; Nomura K
    Endocrinol Jpn; 1981 Aug; 28(4):451-9. PubMed ID: 7052928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hexose monophosphate shunt in the kidney during acid-base and electrolyte imbalance.
    Dies F; Lotspeich WD
    Am J Physiol; 1967 Jan; 212(1):61-71. PubMed ID: 4380972
    [No Abstract]   [Full Text] [Related]  

  • 11. Correlation of hepatic thyroxine 5'-monodeiodination with hexose monophosphate shunt in young rats.
    Sato T; Maruyama S; Saida K; Takata I
    Pediatr Res; 1982 May; 16(5):377-80. PubMed ID: 7099756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulation by propylthiouracil of the hexose monophosphate shunt in human polymorphonuclear leucocytes during phagocytosis.
    Tsan MF; McIntyre PA
    Br J Haematol; 1975 Oct; 31(2):193-208. PubMed ID: 1201238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isoproterenol-induced enhancement of myocardial glucose-6-phosphate dehydrogenase.
    Zimmer HG; Ibel H
    Adv Myocardiol; 1980; 2():145-51. PubMed ID: 7423030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of t-butyl hydroperoxide on NADPH, glutathione, and the respiratory burst of rat alveolar macrophages.
    Sutherland MW; Nelson J; Harrison G; Forman HJ
    Arch Biochem Biophys; 1985 Dec; 243(2):325-31. PubMed ID: 3002274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of and intervention into the oxidative pentose phosphate pathway and adenine nucleotide metabolism in the heart.
    Zimmer HG
    Mol Cell Biochem; 1996; 160-161():101-9. PubMed ID: 8901462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose-6-phosphate dehydrogenase activity and NADPH/NADP+ ratio in liver and pancreas are dependent on the severity of hyperglycemia in rat.
    Díaz-Flores M; Ibáñez-Hernández MA; Galván RE; Gutiérrez M; Durán-Reyes G; Medina-Navarro R; Pascoe-Lira D; Ortega-Camarillo C; Vilar-Rojas C; Cruz M; Baiza-Gutman LA
    Life Sci; 2006 Apr; 78(22):2601-7. PubMed ID: 16325866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid peroxidation and haemoglobin degradation in red blood cells exposed to t-butyl hydroperoxide. Effects of the hexose monophosphate shunt as mediated by glutathione and ascorbate.
    Trotta RJ; Sullivan SG; Stern A
    Biochem J; 1982 May; 204(2):405-15. PubMed ID: 7115337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Respiration and glucose oxidation in human and guinea pig leukocytes: comparative studies.
    Baehner RL; Gilman N; Karnovsky ML
    J Clin Invest; 1970 Apr; 49(4):692-700. PubMed ID: 4392648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mixed function oxidation of hexobarbital and generation of NADPH by the hexose monophosphate shunt in isolated rat liver cells.
    Junge O; Brand K
    Arch Biochem Biophys; 1975 Dec; 171(2):398-406. PubMed ID: 956
    [No Abstract]   [Full Text] [Related]  

  • 20. Genetic and biochemical studies of the hexose monophosphate shunt in Neurospora crassa. I. The influence of genetic defects in the pathway on colonial morphology.
    Fuscaldo KE; Lechner JF; Bazinet G
    Can J Microbiol; 1971 Jun; 17(6):783-8. PubMed ID: 4397246
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.