These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 6189549)

  • 41. Neuropeptide neuronal efferents from the bed nucleus of the stria terminalis and central amygdaloid nucleus to the dorsal vagal complex in the rat.
    Gray TS; Magnuson DJ
    J Comp Neurol; 1987 Aug; 262(3):365-74. PubMed ID: 3655018
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Projections of the precentral motor cortex and other cortical areas of the frontal lobe to the subthalamic nucleus in the monkey.
    Monakow KH; Akert K; Künzle H
    Exp Brain Res; 1978 Nov; 33(3-4):395-403. PubMed ID: 83239
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Direct projections from the non-laminated divisions of the medial geniculate nucleus to the temporal polar cortex and amygdala in the cat.
    Shinonaga Y; Takada M; Mizuno N
    J Comp Neurol; 1994 Feb; 340(3):405-26. PubMed ID: 8188859
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Olivocerebellar projections in the cat studied by means of anterograde axonal transport of labelled amino acids as tracers.
    Kawamura K; Hashikawa T
    Neuroscience; 1979; 4(11):1615-33. PubMed ID: 92769
    [No Abstract]   [Full Text] [Related]  

  • 45. [Amygdaloid innervation of the frontal cortex in cats].
    Llamas A; Clascá F; Avendaño C
    Rev Esp Fisiol; 1989; 45 Suppl():139-49. PubMed ID: 2641813
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Efferent connections of the lateral cortex of the lizard Gekko gecko: evidence for separate origins of medial and lateral pathways from the lateral cortex to the hypothalamus.
    Hoogland PV; Vermeulen-Vanderzee E
    J Comp Neurol; 1995 Feb; 352(3):469-80. PubMed ID: 7535810
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparison of the efferents of the amygdala and the hippocampal formation in the rhesus monkey: II. Reciprocal and non-reciprocal connections.
    Saunders RC; Rosene DL; Van Hoesen GW
    J Comp Neurol; 1988 May; 271(2):185-207. PubMed ID: 2454247
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Projections of the parabrachial nucleus in the old world monkey.
    Pritchard TC; Hamilton RB; Norgren R
    Exp Neurol; 2000 Sep; 165(1):101-17. PubMed ID: 10964489
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sizes, laminar and topographic origins of cortical projections to the major divisions of the red nucleus in the monkey.
    Humphrey DR; Gold R; Reed DJ
    J Comp Neurol; 1984 May; 225(1):75-94. PubMed ID: 6725640
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Amygdalopetal projections in the cat. I. Cortical afferent connections. A study with retrograde and anterograde tracing techniques.
    Russchen FT
    J Comp Neurol; 1982 Apr; 206(2):159-79. PubMed ID: 7085926
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evidence for glutamate as the neurotransmitter of corticothalamic and corticorubral pathways.
    Bromberg MB; Penney JB; Stephenson BS; Young AB
    Brain Res; 1981 Jun; 215(1-2):369-74. PubMed ID: 6167322
    [No Abstract]   [Full Text] [Related]  

  • 52. Intrinsic connections of the rat amygdaloid complex: projections originating in the basal nucleus.
    Savander V; Go CG; LeDoux JE; Pitkänen A
    J Comp Neurol; 1995 Oct; 361(2):345-68. PubMed ID: 8543667
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Architectonics, somatotopic organization, and ipsilateral cortical connections of the primary motor area (M1) of owl monkeys.
    Stepniewska I; Preuss TM; Kaas JH
    J Comp Neurol; 1993 Apr; 330(2):238-71. PubMed ID: 7684050
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Differential projections of the main and accessory olfactory bulb in the frog.
    Scalia F; Gallousis G; Roca S
    J Comp Neurol; 1991 Mar; 305(3):443-61. PubMed ID: 1709955
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Projections from the amygdala to basoventral and mediodorsal prefrontal regions in the rhesus monkey.
    Barbas H; De Olmos J
    J Comp Neurol; 1990 Oct; 300(4):549-71. PubMed ID: 2273093
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The effects of stimulation of substantia innominata and sensory receiving areas of the forebrain upon the activity of neurons within the amygdala of the anesthetized cat.
    Femano PA; Edinger HM; Siegel A
    Brain Res; 1983 Jun; 269(1):119-32. PubMed ID: 6307477
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the entorhinal cortex in the macaque monkey.
    Pitkänen A; Kelly JL; Amaral DG
    Hippocampus; 2002; 12(2):186-205. PubMed ID: 12000118
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Vestibular cortical area in the periarcuate cortex: its afferent and efferent projections.
    Sugiuchi Y; Izawa Y; Ebata S; Shinoda Y
    Ann N Y Acad Sci; 2005 Apr; 1039():111-23. PubMed ID: 15826966
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thalamoamygdaloid projections in the rat: a test of the amygdala's role in sensory processing.
    Turner BH; Herkenham M
    J Comp Neurol; 1991 Nov; 313(2):295-325. PubMed ID: 1765584
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Efferent and afferent connections of mouse sensory-motor cortex following cholinergic deafferentation at birth.
    Höhmann CF; Wilson L; Coyle JT
    Cereb Cortex; 1991; 1(2):158-72. PubMed ID: 1726604
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.