These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 6189549)

  • 81. Medial prefrontal cortical projections to the region of the dorsal periventricular catecholamine system.
    Dalsass M; Kiser S; Mèndershausen M; German DC
    Neuroscience; 1981; 6(4):657-65. PubMed ID: 6165923
    [No Abstract]   [Full Text] [Related]  

  • 82. Microelectrode study of projections from the amygdaloid complex to the nucleus accumbens in the cat.
    Ito N; Ishida H; Miyakawa F; Naito H
    Brain Res; 1974 Feb; 67(2):338-41. PubMed ID: 4470427
    [No Abstract]   [Full Text] [Related]  

  • 83. Neural descending pathways from the cortical jaw motor area and amygdaloid nucleus to jaw muscles.
    KAWAMURA Y; TSUKAMOTO S
    Jpn J Physiol; 1960 Oct; 10():489-98. PubMed ID: 13751988
    [No Abstract]   [Full Text] [Related]  

  • 84. An anatomical investigation of the corticopontaine projection in the primate (Macaca fascicularis and Saimiri sciureus)--II. The projection from frontal and parental association areas.
    Wiesendanger R; Wiesendanger M; Rüegg DG
    Neuroscience; 1979; 4(6):747-65. PubMed ID: 113692
    [No Abstract]   [Full Text] [Related]  

  • 85. Intracellular activity and morphology of the prefrontal neurons related to visual attention task in behaving monkeys.
    Sakai M; Hamada I
    Exp Brain Res; 1981; 41(2):195-8. PubMed ID: 6162663
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Electrophysiological characteristics of amygdaloid central nucleus neurons in the awake rabbit.
    Pascoe JP; Kapp BS
    Brain Res Bull; 1985 Apr; 14(4):331-8. PubMed ID: 4005625
    [TBL] [Abstract][Full Text] [Related]  

  • 87. A prefronto-amygdaloid projection in the monkey: light and electron microscopic evidence.
    Leichnetz GR; Povlishock JT; Astruc J
    Neurosci Lett; 1976 Jul; 2(5):261-5. PubMed ID: 19604768
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Electrophysiological studies on the connections of the amygdaloid nucleus in the cat. I. The neuronal organization of the amygdaloid projection system.
    GLOOR P
    Electroencephalogr Clin Neurophysiol; 1955 May; 7(2):223-42. PubMed ID: 13241384
    [No Abstract]   [Full Text] [Related]  

  • 89. Neocortical transplants in the cerebellum of the rat: their afferents and efferents.
    Oblinger MM; Hallas BH; Das GD
    Brain Res; 1980 May; 189(1):228-32. PubMed ID: 7363088
    [No Abstract]   [Full Text] [Related]  

  • 90. Course and laminar origin of the tectoparabigeminal pathway.
    Holcombe V; Hall WC
    Brain Res; 1981 May; 211(2):405-11. PubMed ID: 6165435
    [No Abstract]   [Full Text] [Related]  

  • 91. Fast axonal transport: recent developments.
    Forman DS
    Prog Brain Res; 1987; 71():103-12. PubMed ID: 2438716
    [No Abstract]   [Full Text] [Related]  

  • 92. Electrophysiological studies on the connections of the amygdaloid nucleus in the cat. II. The electrophysiological properties of the amygdaloid projection system.
    GLOOR P
    Electroencephalogr Clin Neurophysiol; 1955 May; 7(2):243-64. PubMed ID: 13241385
    [No Abstract]   [Full Text] [Related]  

  • 93. Open-field activity and exploration in rats with septal and amygdaloid lesions.
    Corman CD; Meyer PM; Meyer DR
    Brain Res; 1967 Aug; 5(4):469-76. PubMed ID: 6049961
    [No Abstract]   [Full Text] [Related]  

  • 94. Stimulation of amygdaloid nuclei and periamygdaloid cortex with special reference to its effects on uterine movements and ovulation.
    KOIKEGAMI H; YAMADA T; USUI K
    Folia Psychiatr Neurol Jpn; 1954 Jun; 8(1):7-31. PubMed ID: 13220675
    [No Abstract]   [Full Text] [Related]  

  • 95. [Projection at the level of the somato-motor cortex of the monkey of afferences from muscle receptors].
    Albe-Fessard D; Liebeskind J; Lamarre Y
    C R Acad Hebd Seances Acad Sci D; 1965 Nov; 261(19):3891-4. PubMed ID: 4954779
    [No Abstract]   [Full Text] [Related]  

  • 96. Motor System-Dependent Effects of Amygdala and Ventral Striatum Lesions on Explore-Exploit Behaviors.
    Giarrocco F; Costa VD; Basile BM; Pujara MS; Murray EA; Averbeck BB
    J Neurosci; 2024 Jan; 44(5):. PubMed ID: 38296647
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Single basolateral amygdala neurons in macaques exhibit distinct connectional motifs with frontal cortex.
    Zeisler ZR; London L; Janssen WG; Fredericks JM; Elorette C; Fujimoto A; Zhan H; Russ BE; Clem RL; Hof PR; Stoll FM; Rudebeck PH
    Neuron; 2023 Oct; 111(20):3307-3320.e5. PubMed ID: 37857091
    [TBL] [Abstract][Full Text] [Related]  

  • 98. The widespread action observation/execution matching system for facial expression processing.
    Sato W; Kochiyama T; Yoshikawa S
    Hum Brain Mapp; 2023 Jun; 44(8):3057-3071. PubMed ID: 36895114
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Prediction errors and valence: From single units to multidimensional encoding in the amygdala.
    Brockett AT; Vázquez D; Roesch MR
    Behav Brain Res; 2021 Apr; 404():113176. PubMed ID: 33596433
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Multisynaptic Projections from the Amygdala to the Ventral Premotor Cortex in Macaque Monkeys: Anatomical Substrate for Feeding Behavior.
    Ishida H; Inoue KI; Takada M
    Front Neuroanat; 2018; 12():3. PubMed ID: 29403364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.